BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36430897)

  • 1. Analysis of QTLs and Candidate Genes for Tassel Symptoms in Maize Infected with
    Zhou Y; Yao M; Wang Q; Zhang X; Di H; Zhang L; Dong L; Xu Q; Liu X; Zeng X; Wang Z
    Int J Mol Sci; 2022 Nov; 23(22):. PubMed ID: 36430897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological Mechanisms Underlying Tassel Symptom Formation in Maize Infected with
    Wang Y; Xu C; Gao Y; Ma Y; Zhang X; Zhang L; Di H; Ma J; Dong L; Zeng X; Zhang N; Xu J; Li Y; Gao C; Wang Z; Zhou Y
    Plants (Basel); 2024 Jan; 13(2):. PubMed ID: 38256790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sporisorium reilianum infection changes inflorescence and branching architectures of maize.
    Ghareeb H; Becker A; Iven T; Feussner I; Schirawski J
    Plant Physiol; 2011 Aug; 156(4):2037-52. PubMed ID: 21653782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Performing Infection Assays of Sporisorium reilianum f. sp. Zeae in Maize.
    Khan M; Djamei A
    Methods Mol Biol; 2022; 2494():291-298. PubMed ID: 35467215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of Cytology and Expression of Resistance Genes in Maize Infected with
    Qi F; Zhang L; Dong X; Di H; Zhang J; Yao M; Dong L; Zeng X; Liu X; Wang Z; Zhou Y
    Plant Dis; 2019 Aug; 103(8):2100-2107. PubMed ID: 31215852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex genetic architecture underlies maize tassel domestication.
    Xu G; Wang X; Huang C; Xu D; Li D; Tian J; Chen Q; Wang C; Liang Y; Wu Y; Yang X; Tian F
    New Phytol; 2017 Apr; 214(2):852-864. PubMed ID: 28067953
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis.
    Ghareeb H; Drechsler F; Löfke C; Teichmann T; Schirawski J
    Plant Physiol; 2015 Dec; 169(4):2789-804. PubMed ID: 26511912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant Responses of Maize to Two
    Dittiger LD; Chaudhary S; Furch ACU; Mithöfer A; Schirawski J
    Int J Mol Sci; 2023 Oct; 24(21):. PubMed ID: 37958588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An ultra-high density bin-map for rapid QTL mapping for tassel and ear architecture in a large F₂ maize population.
    Chen Z; Wang B; Dong X; Liu H; Ren L; Chen J; Hauck A; Song W; Lai J
    BMC Genomics; 2014 Jun; 15(1):433. PubMed ID: 24898122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sporisorium reilianum possesses a pool of effector proteins that modulate virulence on maize.
    Ghareeb H; Zhao Y; Schirawski J
    Mol Plant Pathol; 2019 Jan; 20(1):124-136. PubMed ID: 30136754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Floral transition in maize infected with Sporisorium reilianum disrupts compatibility with this biotrophic fungal pathogen.
    Zhang S; Gardiner J; Xiao Y; Zhao J; Wang F; Zheng Y
    Planta; 2013 May; 237(5):1251-66. PubMed ID: 23354455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Host specificity in Sporisorium reilianum is determined by distinct mechanisms in maize and sorghum.
    Poloni A; Schirawski J
    Mol Plant Pathol; 2016 Jun; 17(5):741-54. PubMed ID: 26419898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Digital gene expression analysis of early root infection resistance to Sporisorium reilianum f. sp. zeae in maize.
    Zhang S; Xiao Y; Zhao J; Wang F; Zheng Y
    Mol Genet Genomics; 2013 Feb; 288(1-2):21-37. PubMed ID: 23196693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytological and Molecular Characterization of ZmWAK-Mediated Head-Smut Resistance in Maize.
    Zhang N; Zhang B; Zuo W; Xing Y; Konlasuk S; Tan G; Zhang Q; Ye J; Xu M
    Mol Plant Microbe Interact; 2017 Jun; 30(6):455-465. PubMed ID: 28358622
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of QTLs and their candidate genes for the number of maize tassel branches in F
    Ruidong S; Shijin H; Yuwei Q; Yimeng L; Xiaohang Z; Ying L; Xihang L; Mingyang D; Xiangling L; Fenghai L
    Front Plant Sci; 2023; 14():1202755. PubMed ID: 37641589
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combination of multi-locus genome-wide association study and QTL mapping reveals genetic basis of tassel architecture in maize.
    Wang Y; Chen J; Guan Z; Zhang X; Zhang Y; Ma L; Yao Y; Peng H; Zhang Q; Zhang B; Liu P; Zou C; Shen Y; Ge F; Pan G
    Mol Genet Genomics; 2019 Dec; 294(6):1421-1440. PubMed ID: 31289944
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cross-species analysis between the maize smut fungi Ustilago maydis and Sporisorium reilianum highlights the role of transcriptional change of effector orthologs for virulence and disease.
    Zuo W; Depotter JRL; Gupta DK; Thines M; Doehlemann G
    New Phytol; 2021 Oct; 232(2):719-733. PubMed ID: 34270791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum changes inflorescence branching at early stages in di- and monocot plants and induces fruit abortion in Arabidopsis thaliana.
    Drechsler F; Schwinges P; Schirawski J
    Plant Signal Behav; 2016 May; 11(5):e1167300. PubMed ID: 27058118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping QTLs contributing to Ustilago maydis resistance in specific plant tissues of maize.
    Baumgarten AM; Suresh J; May G; Phillips RL
    Theor Appl Genet; 2007 May; 114(7):1229-38. PubMed ID: 17468806
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Positively Selected Effector Genes and Their Contribution to Virulence in the Smut Fungus Sporisorium reilianum.
    Schweizer G; Münch K; Mannhaupt G; Schirawski J; Kahmann R; Dutheil JY
    Genome Biol Evol; 2018 Feb; 10(2):629-645. PubMed ID: 29390140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.