These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36431539)

  • 1. Sliding Wear Behavior of Intermetallic Ti-45Al-2Nb-2Mn-(at%)-0.8vol%TiB
    Shagñay S; Cornide J; Ruiz-Navas EM
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Advanced TiAl Alloy for High-Performance Racing Applications.
    Burtscher M; Klein T; Lindemann J; Lehmann O; Fellmann H; Güther V; Clemens H; Mayer S
    Materials (Basel); 2020 Oct; 13(21):. PubMed ID: 33105858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Study of Microstructure and Mechanical Properties of Two TiAl-Based Alloys Reinforced with Carbide Particles.
    Lapin J; Kamyshnykova K; Klimova A
    Molecules; 2020 Jul; 25(15):. PubMed ID: 32731535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of Combined Heat Treatment and Hot Isostatic Pressure (HT-HIP) on Titanium Aluminide Processed by L-PBF.
    Soliman HA; Pineault J; Elbestawi M
    Materials (Basel); 2023 Jul; 16(14):. PubMed ID: 37512345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Model for Creep and Creep Damage in the γ-Titanium Aluminide Ti-45Al-2Mn-2Nb.
    Harrison W; Abdallah Z; Whittaker M
    Materials (Basel); 2014 Mar; 7(3):2194-2209. PubMed ID: 28788563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanical alloying and high pressure processing of a TiAl-V intermetallic alloy.
    Dymek S; Wróbel M; Witczak Z; Blicharski M
    J Microsc; 2010 Mar; 237(3):481-6. PubMed ID: 20500422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Processing and Microstructure of As-Cast Ti-45Al-2W-xC Alloys.
    Cegan T; Kamyshnykova K; Lapin J; Szurman I; Jurica J; Klimantova V
    Materials (Basel); 2022 Jul; 15(14):. PubMed ID: 35888514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of microstructure, nanomechanical and tribological properties of Ti-xNi alloys fabricated by spark plasma sintering.
    Rominiyi AL; Mashinini PM
    Heliyon; 2023 May; 9(5):e15887. PubMed ID: 37206023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro evaluation of human osteoblast adhesion to a thermally oxidized gamma-TiAl intermetallic alloy of composition Ti-48Al-2Cr-2Nb (at.%).
    Bello SA; de Jesús-Maldonado I; Rosim-Fachini E; Sundaram PA; Diffoot-Carlo N
    J Mater Sci Mater Med; 2010 May; 21(5):1739-50. PubMed ID: 20162332
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microstructural Evolution and Mechanical Properties of an Advanced γ-TiAl Based Alloy Processed by Spark Plasma Sintering.
    Wimler D; Lindemann J; Clemens H; Mayer S
    Materials (Basel); 2019 May; 12(9):. PubMed ID: 31075938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure and Properties of Cast Ti-Al-Si Alloys.
    Knaislová A; Novák P; Linhart J; Szurman I; Skotnicová K; Juřica J; Čegan T
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33567729
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microstructure and Tribological Properties of Mo-40Ni-13Si Multiphase Intermetallic Alloy.
    Song C; Wang S; Gui Y; Cheng Z; Ni G
    Materials (Basel); 2016 Dec; 9(12):. PubMed ID: 28774106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Study on improved tribological properties by alloying copper to CP-Ti and Ti-6Al-4V alloy.
    Wang S; Ma Z; Liao Z; Song J; Yang K; Liu W
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():123-32. PubMed ID: 26354247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Ti-0.48Al Alloy by Centrifugal Casting.
    Park JB; Lee JI; Ryu JH
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6189-6194. PubMed ID: 29677765
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Additive Manufacturing of Ti-Based Intermetallic Alloys: A Review and Conceptualization of a Next-Generation Machine.
    Dzogbewu TC; du Preez WB
    Materials (Basel); 2021 Aug; 14(15):. PubMed ID: 34361509
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal Expansion of a Multiphase Intermetallic Ti-Al-Nb-Mo Alloy Studied by High-Energy X-ray Diffraction.
    Staron P; Stark A; Schell N; Spoerk-Erdely P; Clemens H
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33557276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of Hot Isostatic Pressing and Heat Treatment for Advanced Modified γ-TiAl TNM Alloys.
    Bernal D; Chamorro X; Hurtado I; Lopez-Galilea I; Bürger D; Weber S; Madariaga I
    Materials (Basel); 2022 Jun; 15(12):. PubMed ID: 35744269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sliding and Fretting Wear Behavior of Biomedical Ultrafine-Grained TiNbZrTaFe/Si Alloys in Simulated Physiological Solution.
    Li Y; Zhang Q; He Y; Zhao R; Chu J; Niu L; Qu J
    Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Aging Heat Treatment on Wear Behavior and Microstructure Characterization of Newly Developed Al7075+Ti Alloys.
    Nama HAHA; Esen İ; Ahlatcı H; Karakurt V
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on Fatigue Threshold Testing Methods in a Near Lamellar TiAl Alloy.
    Wang S; Li H; Bowen P
    Materials (Basel); 2019 Oct; 12(21):. PubMed ID: 31653069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.