These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 36431554)

  • 21. Tailoring the magnetic properties and magnetorheological behavior of spinel nanocrystalline cobalt ferrite by varying annealing temperature.
    Sedlacik M; Pavlinek V; Peer P; Filip P
    Dalton Trans; 2014 May; 43(18):6919-24. PubMed ID: 24668306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Searching for a Stable High-Performance Magnetorheological Suspension.
    Seo YP; Han S; Choi J; Takahara A; Choi HJ; Seo Y
    Adv Mater; 2018 Oct; 30(42):e1704769. PubMed ID: 30151957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnetic field tuning of mechanical properties of ultrasoft PDMS-based magnetorheological elastomers for biological applications.
    Clark AT; Bennett A; Kraus E; Pogoda K; Cēbers A; Janmey P; Turner KT; Corbin EA; Cheng X
    Multifunct Mater; 2021 Sep; 4(3):. PubMed ID: 36860552
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of Volume Fraction on Shear Mode Properties of Fe-Co and Fe-Ni Filled Magneto-Rheological Elastomers.
    Tahir S; Usman M; Umer MA
    Polymers (Basel); 2022 Jul; 14(14):. PubMed ID: 35890744
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rheological Properties and Stabilization of Magnetorheological Fluids in a Water-in-Oil Emulsion.
    Park JH; Chin BD; Park OO
    J Colloid Interface Sci; 2001 Aug; 240(1):349-354. PubMed ID: 11446818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microstructure Simulation and Constitutive Modelling of Magnetorheological Fluids Based on the Hexagonal Close-packed Structure.
    Zhang J; Song W; Peng Z; Gao J; Wang N; Choi SB; Kim GW
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260188
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Investigation of the Effect of Carbonyl Iron Micro-Particles on the Mechanical and Rheological Properties of Isotropic and Anisotropic MREs: Constitutive Magneto-Mechanical Material Model.
    Soria-Hernández CG; Palacios-Pineda LM; Elías-Zúñiga A; Perales-Martínez IA; Martínez-Romero O
    Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31627370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental investigation on the influence of temperature on the hysteresis behavior of magnetorheological gel by employing a large-amplitude-oscillation-shear test method.
    Wei C
    RSC Adv; 2022 Jan; 12(4):2416-2424. PubMed ID: 35425222
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Experiments and Simulations on the Magnetorheology of Magnetic Fluid Based on Fe
    Pei L; Xuan S; Wu J; Bai L; Gong X
    Langmuir; 2019 Sep; 35(37):12158-12167. PubMed ID: 31448919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Carbonyl Iron Particle Types on the Structure and Performance of Magnetorheological Elastomers: A Frequency and Strain Dependent Study.
    Salem AMH; Ali A; Ramli RB; Muthalif AGA; Julai S
    Polymers (Basel); 2022 Oct; 14(19):. PubMed ID: 36236145
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Compressions of magnetorheological fluids under instantaneous magnetic field and constant area.
    Wang H; Bi C; Zhang Y; Zhang L; Zhou F
    Sci Rep; 2021 Apr; 11(1):8887. PubMed ID: 33903684
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Analysis of Styrene-Butadiene Based Thermoplastic Magnetorheological Elastomers with Surface-Treated Iron Particles.
    Tagliabue A; Eblagon F; Clemens F
    Polymers (Basel); 2021 May; 13(10):. PubMed ID: 34063435
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymer-Magnetic Composite Particles of Fe₃O₄/Poly(
    Lee JH; Lu Q; Lee JY; Choi HJ
    Polymers (Basel); 2019 Jan; 11(2):. PubMed ID: 30960203
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Rheological Studies on Poly(vinyl) Alcohol-Based Hydrogel Magnetorheological Plastomer.
    Hapipi NM; Mazlan SA; Ubaidillah U; Homma K; Aziz SAA; Nordin NA; Bahiuddin I; Nazmi N
    Polymers (Basel); 2020 Oct; 12(10):. PubMed ID: 33065979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Loss Factor Behavior of Thermally Aged Magnetorheological Elastomers.
    Aziz SAA; Mazlan SA; Ubaidillah U; Mohamad N; Sedlacik M; Nordin NA; Nazmi N
    Materials (Basel); 2021 Aug; 14(17):. PubMed ID: 34500964
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Solvent Dependence of the Rheological Properties in Hydrogel Magnetorheological Plastomer.
    Hapipi NM; Mazlan SA; Ubaidillah U; Abdul Aziz SA; Ahmad Khairi MH; Nordin NA; Nazmi N
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32151055
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and Characterization of Isotropic and Anisotropic Magnetorheological Elastomers, Based on Silicone Rubber and Carbonyl Iron Microparticles.
    Puente-Córdova JG; Reyes-Melo ME; Palacios-Pineda LM; Martínez-Perales IA; Martínez-Romero O; Elías-Zúñiga A
    Polymers (Basel); 2018 Dec; 10(12):. PubMed ID: 30961268
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tunable Young's Moduli of Soft Composites Fabricated from Magnetorheological Materials Containing Microsized Iron Particles.
    Yoon JY; Hong SW; Park YJ; Kim SH; Kim GW; Choi SB
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32751548
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermal Stability and Rheological Properties of Epoxidized Natural Rubber-Based Magnetorheological Elastomer.
    Yunus NA; Mazlan SA; ; Abdul Aziz SA; Tan Shilan S; Abdul Wahab NA
    Int J Mol Sci; 2019 Feb; 20(3):. PubMed ID: 30744210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Simulation of the optimal diameter and wall thickness of hollow Fe
    Pei L; Pang H; Chen K; Xuan S; Gong X
    Soft Matter; 2018 Jun; 14(24):5080-5091. PubMed ID: 29873389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.