These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36431582)

  • 41. Effects of WO(x) modification on the activity, adsorption and redox properties of CeO2 catalyst for NO(x) reduction with ammonia.
    Ma Z; Weng D; Wu X; Si Z
    J Environ Sci (China); 2012; 24(7):1305-16. PubMed ID: 23513452
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Methanol promoted naphtha catalytic pyrolysis to light olefins on Zn-modified high-silicon HZSM-5 zeolite catalysts.
    Cheng QT; Shen BX; Sun H; Zhao JG; Liu JC
    RSC Adv; 2019 Jul; 9(36):20818-20828. PubMed ID: 35515572
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Nanoporous bimetallic metal-organic framework (FeCo-BDC) as a novel catalyst for efficient removal of organic contaminants.
    Li H; Zhang J; Yao Y; Miao X; Chen J; Tang J
    Environ Pollut; 2019 Dec; 255(Pt 2):113337. PubMed ID: 31610507
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Synthesis of highly active sulfate-promoted rutile titania nanoparticles with a response to visible light.
    Yang Q; Xie C; Xu Z; Gao Z; Du Y
    J Phys Chem B; 2005 Mar; 109(12):5554-60. PubMed ID: 16851596
    [TBL] [Abstract][Full Text] [Related]  

  • 45.
    Yadav G; Ahmaruzzaman M
    ACS Omega; 2022 Aug; 7(32):28534-28544. PubMed ID: 35990478
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous removal of NO
    Yue H; Lu P; Su W; Xing Y; Li R; Wang J
    Environ Sci Pollut Res Int; 2019 May; 26(13):13602-13618. PubMed ID: 30919195
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of UiO-66-Pyca-CuO by a Simple and Novel Method: MOF-based Metal Thin Film as Heterogeneous Catalysts for the Synthesis of α-Aminonitriles.
    Moghadaskhou F; Tadjarodi A; Maleki A
    ACS Appl Mater Interfaces; 2024 Jul; ():. PubMed ID: 39051170
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integrated ternary nanocomposite of TiO2/NiO/reduced graphene oxide as a visible light photocatalyst for efficient degradation of o-chlorophenol.
    Sharma A; Lee BK
    J Environ Manage; 2016 Oct; 181():563-573. PubMed ID: 27423769
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Structural/Texture Evolution During Facile Substitution of Ni into ZSM-5 Nanostructure vs. its Impregnation Dispersion Used in Selective Transformation of Methanol to Ethylene and Propylene.
    Sadeghpour P; Haghighi M; Esmaeili M
    Comb Chem High Throughput Screen; 2021; 24(4):490-508. PubMed ID: 32842938
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Efficient photocatalytic degradation of acrylonitrile by Sulfur-Bismuth co-doped F-TiO
    Li H; Qiu L; Bharti B; Dai F; Zhu M; Ouyang F; Lin L
    Chemosphere; 2020 Jun; 249():126135. PubMed ID: 32078853
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure based optical properties and catalytic activities of hydrothermally prepared CuS nanostructures.
    Mezgebe MM; Ju A; Wei G; Macharia DK; Guang S; Xu H
    Nanotechnology; 2019 Mar; 30(10):105704. PubMed ID: 30530945
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Highly efficient and stable catalysts-covalent organic framework-supported palladium particles for 4-nitrophenol catalytic hydrogenation.
    Deng X; Zhu L; Zhang H; Li L; Zhao N; Wang J; Osman SM; Luque R; Chen BH
    Environ Res; 2022 Nov; 214(Pt 4):114027. PubMed ID: 35988829
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Degradation of phenol via wet-air oxidation over CuO/CeO2-ZrO2 nanocatalyst synthesized employing ultrasound energy: physicochemical characterization and catalytic performance.
    Parvas M; Haghighi M; Allahyari S
    Environ Technol; 2014; 35(9-12):1140-9. PubMed ID: 24701909
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Fe3-xCuxO4 as highly active heterogeneous Fenton-like catalysts toward elemental mercury removal.
    Zhou C; Sun L; Zhang A; Wu X; Ma C; Su S; Hu S; Xiang J
    Chemosphere; 2015 Apr; 125():16-24. PubMed ID: 25655441
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Copper nickel co-impregnation of Moroccan yellow clay as promising catalysts for the catalytic wet peroxide oxidation of caffeine.
    Assila O; Zouheir M; Tanji K; Haounati R; Zerrouq F; Kherbeche A
    Heliyon; 2021 Jan; 7(1):e06069. PubMed ID: 33553747
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chromium-free Cu@Mg/γ-Al
    Arundhathi R; Reddy PL; Samanta C; Newalkar BL
    RSC Adv; 2020 Nov; 10(67):41120-41126. PubMed ID: 35519200
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Investigating cyanogen rich
    Dube S; Matsinha LC; Makhubela BCE; Ambushe AA
    RSC Adv; 2021 Dec; 12(2):1165-1176. PubMed ID: 35425133
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Amine functionalized K10 montmorillonite: a solid acid-base catalyst for the Knoevenagel condensation reaction.
    Varadwaj GB; Rana S; Parida KM
    Dalton Trans; 2013 Apr; 42(14):5122-9. PubMed ID: 23400041
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Organoselenium functionalized SBA-15 as a new catalyst for the cyanide-free conversion of oximes to nitriles.
    Bigdelo M; Nemati F; Rangraz Y
    BMC Chem; 2022 Nov; 16(1):99. PubMed ID: 36414989
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.