These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36431718)

  • 81. Feasibility Study on the Fused Filaments of Injection-Molding-Grade Poly(Ethylene Terephthalate) for 3D Printing.
    Tsai HH; Wu SJ; Wu YD; Hong WZ
    Polymers (Basel); 2022 Jun; 14(11):. PubMed ID: 35683948
    [TBL] [Abstract][Full Text] [Related]  

  • 82. New Dual Functional PHB-Grafted Lignin Copolymer: Synthesis, Mechanical Properties, and Biocompatibility Studies.
    Kai D; Zhang K; Liow SS; Loh XJ
    ACS Appl Bio Mater; 2019 Jan; 2(1):127-134. PubMed ID: 35016335
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Evaluation of the Factors Affecting the Disintegration under a Composting Process of Poly(lactic acid)/Poly(3-hydroxybutyrate) (PLA/PHB) Blends.
    Iglesias-Montes ML; Soccio M; Luzi F; Puglia D; Gazzano M; Lotti N; Manfredi LB; Cyras VP
    Polymers (Basel); 2021 Sep; 13(18):. PubMed ID: 34578071
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Fabrication of lignin/poly(3-hydroxybutyrate) nanocomposites with enhanced properties via a Pickering emulsion approach.
    Lugoloobi I; Li X; Zhang Y; Mao Z; Wang B; Sui X; Feng X
    Int J Biol Macromol; 2020 Dec; 165(Pt B):3078-3087. PubMed ID: 33736293
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol-Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering.
    Ding Y; Li W; Müller T; Schubert DW; Boccaccini AR; Yao Q; Roether JA
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17098-108. PubMed ID: 27295496
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Coupling hot melt extrusion and fused deposition modeling: Critical properties for successful performance.
    Bandari S; Nyavanandi D; Dumpa N; Repka MA
    Adv Drug Deliv Rev; 2021 May; 172():52-63. PubMed ID: 33571550
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Blends of Poly(3-Hydroxybutyrate-
    Meléndez-Rodríguez B; Torres-Giner S; Reis MAM; Silva F; Matos M; Cabedo L; Lagarón JM
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33916564
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Polylactic Acid/Polycaprolactone Blends: On the Path to Circular Economy, Substituting Single-Use Commodity Plastic Products.
    Delgado-Aguilar M; Puig R; Sazdovski I; Fullana-I-Palmer P
    Materials (Basel); 2020 Jun; 13(11):. PubMed ID: 32532142
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Biopolymer Blends of Poly(lactic acid) and Poly(hydroxybutyrate) and Their Functionalization with Glycerol Triacetate and Chitin Nanocrystals for Food Packaging Applications.
    Patel MK; Hansson F; Pitkänen O; Geng S; Oksman K
    ACS Appl Polym Mater; 2022 Sep; 4(9):6592-6601. PubMed ID: 36119407
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Preparation and characterization of blends of star-poly(epsilon-caprolactone-co-D,L-lactide) and oligo(epsilon-caprolactone).
    Tomkins A; Kontopoulou M; Amsden B
    J Biomater Sci Polym Ed; 2005; 16(8):1009-21. PubMed ID: 16128234
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering.
    Arbade GK; Srivastava J; Tripathi V; Lenka N; Patro TU
    J Biomater Sci Polym Ed; 2020 Sep; 31(13):1648-1670. PubMed ID: 32402230
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Blends Based on Poly(ε-Caprolactone) with Addition of Poly(Lactic Acid) and Coconut Fibers: Thermal Analysis, Ageing Behavior and Application for Embossing Process.
    Priselac D; Mahović Poljaček S; Tomašegović T; Leskovac M
    Polymers (Basel); 2022 Apr; 14(9):. PubMed ID: 35566960
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Immiscible poly(lactic acid)/poly(ε-caprolactone) for temporary implants: Compatibility and cytotoxicity.
    Finotti PF; Costa LC; Capote TS; Scarel-Caminaga RM; Chinelatto MA
    J Mech Behav Biomed Mater; 2017 Apr; 68():155-162. PubMed ID: 28171812
    [TBL] [Abstract][Full Text] [Related]  

  • 94. 3D-Printable PP/SEBS Thermoplastic Elastomeric Blends: Preparation and Properties.
    Banerjee SS; Burbine S; Kodihalli Shivaprakash N; Mead J
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960331
    [TBL] [Abstract][Full Text] [Related]  

  • 95. 3D printed PEEK/HA composites for bone tissue engineering applications: Effect of material formulation on mechanical performance and bioactive potential.
    Manzoor F; Golbang A; Jindal S; Dixon D; McIlhagger A; Harkin-Jones E; Crawford D; Mancuso E
    J Mech Behav Biomed Mater; 2021 Sep; 121():104601. PubMed ID: 34077906
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Mechanical Recycling of Partially Bio-Based and Recycled Polyethylene Terephthalate Blends by Reactive Extrusion with Poly(styrene-
    Montava-Jorda S; Lascano D; Quiles-Carrillo L; Montanes N; Boronat T; Martinez-Sanz AV; Ferrandiz-Bou S; Torres-Giner S
    Polymers (Basel); 2020 Jan; 12(1):. PubMed ID: 31936575
    [TBL] [Abstract][Full Text] [Related]  

  • 97. The terpolymer produced by Azotobacter chroococcum 7B: effect of surface properties on cell attachment.
    Bonartsev A; Yakovlev S; Boskhomdzhiev A; Zharkova I; Bagrov D; Myshkina V; Mahina T; Kharitonova E; Samsonova O; Zernov A; Zhuikov V; Efremov Y; Voinova V; Bonartseva G; Shaitan K
    PLoS One; 2013; 8(2):e57200. PubMed ID: 23468935
    [TBL] [Abstract][Full Text] [Related]  

  • 98. A 4D Printable Shape Memory Vitrimer with Repairability and Recyclability through Network Architecture Tailoring from Commercial Poly(ε-caprolactone).
    Joe J; Shin J; Choi YS; Hwang JH; Kim SH; Han J; Park B; Lee W; Park S; Kim YS; Kim DG
    Adv Sci (Weinh); 2021 Dec; 8(24):e2103682. PubMed ID: 34716690
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Control on molecular weight reduction of poly(ε-caprolactone) during melt spinning--a way to produce high strength biodegradable fibers.
    Pal J; Kankariya N; Sanwaria S; Nandan B; Srivastava RK
    Mater Sci Eng C Mater Biol Appl; 2013 Oct; 33(7):4213-20. PubMed ID: 23910335
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Biocomposite Materials Based on Poly(3-hydroxybutyrate) and Chitosan: A Review.
    Zhuikova Y; Zhuikov V; Varlamov V
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559916
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.