These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 36431843)
1. Emulsifying Properties of Rhamnolipids and Their In Vitro Antifungal Activity against Plant Pathogenic Fungi. Li D; Tao W; Yu D; Li S Molecules; 2022 Nov; 27(22):. PubMed ID: 36431843 [TBL] [Abstract][Full Text] [Related]
2. Oxygen effects on rhamnolipids production by Pseudomonas aeruginosa. Zhao F; Shi R; Ma F; Han S; Zhang Y Microb Cell Fact; 2018 Mar; 17(1):39. PubMed ID: 29523151 [TBL] [Abstract][Full Text] [Related]
3. High-Yield Di-Rhamnolipid Production by Li Z; Zhang Y; Lin J; Wang W; Li S Molecules; 2019 Apr; 24(7):. PubMed ID: 30979013 [TBL] [Abstract][Full Text] [Related]
4. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application. Li C; Wang Y; Zhou L; Cui Q; Sun W; Yang J; Su H; Zhao F Lett Appl Microbiol; 2024 Feb; 77(2):. PubMed ID: 38366661 [TBL] [Abstract][Full Text] [Related]
5. Comparison of mono-rhamnolipids and di-rhamnolipids on microbial enhanced oil recovery (MEOR) applications. Rocha VAL; de Castilho LVA; de Castro RPV; Teixeira DB; Magalhães AV; Gomez JGC; Freire DMG Biotechnol Prog; 2020 Jul; 36(4):e2981. PubMed ID: 32083814 [TBL] [Abstract][Full Text] [Related]
6. Antifungal properties of rhamnolipid produced by Pseudomonas aeruginosa DS9 against Colletotrichum falcatum. Goswami D; Borah SN; Lahkar J; Handique PJ; Deka S J Basic Microbiol; 2015 Nov; 55(11):1265-74. PubMed ID: 26173581 [TBL] [Abstract][Full Text] [Related]
7. Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. Sha R; Jiang L; Meng Q; Zhang G; Song Z J Basic Microbiol; 2012 Aug; 52(4):458-66. PubMed ID: 22052667 [TBL] [Abstract][Full Text] [Related]
8. Sodium chloride effect on the aggregation behaviour of rhamnolipids and their antifungal activity. Rodrigues AI; Gudiña EJ; Teixeira JA; Rodrigues LR Sci Rep; 2017 Oct; 7(1):12907. PubMed ID: 29018256 [TBL] [Abstract][Full Text] [Related]
9. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Christova N; Tuleva B; Cohenb R; Ivanova G; Stoevd G; Stoilova-Disheva M; Stoineva I Z Naturforsch C J Biosci; 2011; 66(7-8):394-402. PubMed ID: 21950164 [TBL] [Abstract][Full Text] [Related]
10. High Di-rhamnolipid Production Using Zhou J; Xue R; Liu S; Xu N; Xin F; Zhang W; Jiang M; Dong W Front Bioeng Biotechnol; 2019; 7():245. PubMed ID: 31696112 [TBL] [Abstract][Full Text] [Related]
11. Enhanced production of mono-rhamnolipid in Pseudomonas aeruginosa and application potential in agriculture and petroleum industry. Zhao F; Yuan M; Lei L; Li C; Xu X Bioresour Technol; 2021 Mar; 323():124605. PubMed ID: 33388600 [TBL] [Abstract][Full Text] [Related]
12. Cytotoxic effects of mono- and di-rhamnolipids from Pseudomonas aeruginosa MR01 on MCF-7 human breast cancer cells. Rahimi K; Lotfabad TB; Jabeen F; Mohammad Ganji S Colloids Surf B Biointerfaces; 2019 Sep; 181():943-952. PubMed ID: 31382344 [TBL] [Abstract][Full Text] [Related]
13. Anti-biofilm Properties of Bacterial Di-Rhamnolipids and Their Semi-Synthetic Amide Derivatives. Aleksic I; Petkovic M; Jovanovic M; Milivojevic D; Vasiljevic B; Nikodinovic-Runic J; Senerovic L Front Microbiol; 2017; 8():2454. PubMed ID: 29276509 [TBL] [Abstract][Full Text] [Related]
14. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB; Abassi H; Ahmadkhaniha R; Roostaazad R; Masoomi F; Zahiri HS; Ahmadian G; Vali H; Noghabi KA Colloids Surf B Biointerfaces; 2010 Dec; 81(2):397-405. PubMed ID: 20732795 [TBL] [Abstract][Full Text] [Related]
15. Recycling of cooking oil fume condensate for the production of rhamnolipids by Pseudomonas aeruginosa WB505. Wu J; Zhang J; Zhang H; Gao M; Liu L; Zhan X Bioprocess Biosyst Eng; 2019 May; 42(5):777-784. PubMed ID: 30741355 [TBL] [Abstract][Full Text] [Related]
16. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U; Singh DN; Hira P; Lee JK; Kalia VC; Lal R; Shakarad M J Biotechnol; 2020 Jan; 307():98-106. PubMed ID: 31705932 [TBL] [Abstract][Full Text] [Related]
17. Structural and Physicochemical Characterization of Rhamnolipids produced by Pseudomonas aeruginosa P6. El-Housseiny GS; Aboshanab KM; Aboulwafa MM; Hassouna NA AMB Express; 2020 Nov; 10(1):201. PubMed ID: 33146788 [TBL] [Abstract][Full Text] [Related]
18. Comparative study on antimicrobial activity of mono-rhamnolipid and di-rhamnolipid and exploration of cost-effective antimicrobial agents for agricultural applications. Zhao F; Wang B; Yuan M; Ren S Microb Cell Fact; 2022 Oct; 21(1):221. PubMed ID: 36274139 [TBL] [Abstract][Full Text] [Related]
19. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Gudiña EJ; Rodrigues AI; Alves E; Domingues MR; Teixeira JA; Rodrigues LR Bioresour Technol; 2015 Feb; 177():87-93. PubMed ID: 25479398 [TBL] [Abstract][Full Text] [Related]