These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36431846)

  • 1. Recent Progress in Bi-Based Anodes for Magnesium Ion Batteries.
    Song M; Gao H; Zhang Z
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36431846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. AZ31 Magnesium Alloy Foils as Thin Anodes for Rechargeable Magnesium Batteries.
    Maddegalla A; Mukherjee A; Blázquez JA; Azaceta E; Leonet O; Mainar AR; Kovalevsky A; Sharon D; Martin JF; Sotta D; Ein-Eli Y; Aurbach D; Noked M
    ChemSusChem; 2021 Nov; 14(21):4690-4696. PubMed ID: 34339584
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Composition- and size-modulated porous bismuth-tin biphase alloys as anodes for advanced magnesium ion batteries.
    Niu J; Yin K; Gao H; Song M; Ma W; Peng Z; Zhang Z
    Nanoscale; 2019 Aug; 11(32):15279-15288. PubMed ID: 31386748
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational Design Strategy of Novel Energy Storage Systems: Toward High-Performance Rechargeable Magnesium Batteries.
    Lei X; Liang X; Yang R; Zhang F; Wang C; Lee CS; Tang Y
    Small; 2022 Jun; 18(22):e2200418. PubMed ID: 35315220
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomistic Mechanisms of Mg Insertion Reactions in Group XIV Anodes for Mg-Ion Batteries.
    Wang M; Yuwono JA; Vasudevan V; Birbilis N; Medhekar NV
    ACS Appl Mater Interfaces; 2019 Jan; 11(1):774-783. PubMed ID: 30525421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Progress and Challenges in the Optimization of Electrode Materials for Rechargeable Magnesium Batteries.
    Pei C; Xiong F; Yin Y; Liu Z; Tang H; Sun R; An Q; Mai L
    Small; 2021 Jan; 17(3):e2004108. PubMed ID: 33354934
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phase Separation Induced Binary Core-Shell Alloy Nanoparticles Embedded in Carbon Sheets for Magnesium Storage.
    Chen C; Huang H; Hu R; Bi R; Zhang L
    ACS Appl Mater Interfaces; 2022 Sep; 14(35):39965-39975. PubMed ID: 36000722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-State Electrolytes for Rechargeable Magnesium-Ion Batteries: From Structure to Mechanism.
    Guo M; Yuan C; Zhang T; Yu X
    Small; 2022 Oct; 18(43):e2106981. PubMed ID: 35182102
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organic Electrolyte Design for Rechargeable Batteries: From Lithium to Magnesium.
    Zhang H; Qiao L; Armand M
    Angew Chem Int Ed Engl; 2022 Dec; 61(52):e202214054. PubMed ID: 36219515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent Progress on the Alloy-Based Anode for Sodium-Ion Batteries and Potassium-Ion Batteries.
    Song K; Liu C; Mi L; Chou S; Chen W; Shen C
    Small; 2021 Mar; 17(9):e1903194. PubMed ID: 31544320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vanadium Tetrasulfide for Next-Generation Rechargeable Batteries: Advances and Challenges.
    Yao K; Wu M; Chen D; Liu C; Xu C; Yang D; Yao H; Liu L; Zheng Y; Rui X
    Chem Rec; 2022 Oct; 22(10):e202200117. PubMed ID: 35789529
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An Overview on Anodes for Magnesium Batteries: Challenges towards a Promising Storage Solution for Renewables.
    Bella F; De Luca S; Fagiolari L; Versaci D; Amici J; Francia C; Bodoardo S
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33809914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges and Strategies of Low-Cost Aluminum Anodes for High-Performance Al-Based Batteries.
    Jiang M; Fu C; Meng P; Ren J; Wang J; Bu J; Dong A; Zhang J; Xiao W; Sun B
    Adv Mater; 2022 Jan; 34(2):e2102026. PubMed ID: 34668245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Current Design Strategies for Rechargeable Magnesium-Based Batteries.
    Zhang J; Chang Z; Zhang Z; Du A; Dong S; Li Z; Li G; Cui G
    ACS Nano; 2021 Oct; 15(10):15594-15624. PubMed ID: 34633797
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon-Based Alloy-Type Composite Anode Materials toward Sodium-Ion Batteries.
    Yang G; Ilango PR; Wang S; Nasir MS; Li L; Ji D; Hu Y; Ramakrishna S; Yan W; Peng S
    Small; 2019 May; 15(22):e1900628. PubMed ID: 30969031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A strategy for anode modification for future zinc-based battery application.
    Zhou LF; Du T; Li JY; Wang YS; Gong H; Yang QR; Chen H; Luo WB; Wang JZ
    Mater Horiz; 2022 Oct; 9(11):2722-2751. PubMed ID: 36196916
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applications of Low-Melting-Point Metals in Rechargeable Metal Batteries.
    Li Q; He G; Ding Y
    Chemistry; 2021 Apr; 27(21):6407-6421. PubMed ID: 33124736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Alloy-Based Anode Materials toward Advanced Sodium-Ion Batteries.
    Lao M; Zhang Y; Luo W; Yan Q; Sun W; Dou SX
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28656595
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic Effects of Electrodes and Electrolytes in Metal-Sulfur Batteries: Progress and Prospective.
    Zeng L; Zhu J; Chu PK; Huang L; Wang J; Zhou G; Yu XF
    Adv Mater; 2022 Dec; 34(49):e2204636. PubMed ID: 35903947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sn-, Sb- and Bi-Based Anodes for Potassium Ion Battery.
    Gu Y; Ru Pei Y; Zhao M; Cheng Yang C; Jiang Q
    Chem Rec; 2022 Oct; 22(10):e202200098. PubMed ID: 35686885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.