These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 36431981)
1. AIEgen-Enabled Multicolor Visualization for the Formation of Supramolecular Polymer Networks. Xu S; Zhang H; Li Q; Liu H; Ji X Molecules; 2022 Nov; 27(22):. PubMed ID: 36431981 [TBL] [Abstract][Full Text] [Related]
2. Pillar[5]arene-Based AIE Supramolecular Polymer Networks Exhibiting Various Fluorescence to Achieve Visible Surveillance. Sheng L; Liu H; Hu Z; Ji X Chemistry; 2023 Jul; 29(42):e202300990. PubMed ID: 37170444 [TBL] [Abstract][Full Text] [Related]
3. Self-Healing Gelatin Hydrogels Cross-Linked by Combining Multiple Hydrogen Bonding and Ionic Coordination. Zhang G; Lv L; Deng Y; Wang C Macromol Rapid Commun; 2017 Jun; 38(12):. PubMed ID: 28481407 [TBL] [Abstract][Full Text] [Related]
4. Fluorescence color change of supramolecular polymer networks controlled by crown ether-cation recognition. Han W; Tian H; Qiang T; Wang H; Wang P Chemistry; 2024 Feb; 30(12):e202303569. PubMed ID: 38066712 [TBL] [Abstract][Full Text] [Related]
5. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host-Guest Interactions. Xia D; Wang P; Ji X; Khashab NM; Sessler JL; Huang F Chem Rev; 2020 Jul; 120(13):6070-6123. PubMed ID: 32426970 [TBL] [Abstract][Full Text] [Related]
6. Self-healing gelatin-based shape memory hydrogels via quadruple hydrogen bonding and coordination crosslinking for controlled delivery of 5-fluorouracil. Xu Y; Yang H; Zhu H; Jiang L; Yang H J Biomater Sci Polym Ed; 2020 Apr; 31(6):712-728. PubMed ID: 31955653 [TBL] [Abstract][Full Text] [Related]
7. Highly Strong and Tough Supramolecular Polymer Networks Enabled by Cryptand-Based Host-Guest Recognition. Liu Y; Wan J; Zhao X; Zhao J; Guo Y; Bai R; Zhang Z; Yu W; Gibson HW; Yan X Angew Chem Int Ed Engl; 2023 May; 62(20):e202302370. PubMed ID: 36930044 [TBL] [Abstract][Full Text] [Related]
8. Microphase separation of a quadruple hydrogen bonding supramolecular polymer: effect of the steric hindrance of the ureido-pyrimidone on their viscoelasticity. Kan L; Zhang P; Jiang H; Zhang S; Liu Z; Zhang X; Ma N; Qiu D; Wei H RSC Adv; 2019 Mar; 9(16):8905-8911. PubMed ID: 35517677 [TBL] [Abstract][Full Text] [Related]
9. Mechanical tough and multicolor aggregation-induced emissive polymeric hydrogels for fluorescent patterning. Zhang Y; Wang R; Lu W; Li W; Chen S; Chen T Nanoscale Adv; 2023 Jan; 5(3):725-732. PubMed ID: 36756500 [TBL] [Abstract][Full Text] [Related]
10. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches. Shigemitsu H; Hamachi I Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940 [TBL] [Abstract][Full Text] [Related]
11. Ultrastable, Superrobust, and Recyclable Supramolecular Polymer Networks. Niu W; Li Z; Liang F; Zhang H; Liu X Angew Chem Int Ed Engl; 2024 Mar; 63(10):e202318434. PubMed ID: 38234012 [TBL] [Abstract][Full Text] [Related]
12. An AB Shao L; Zhang Z; Hua B Macromol Rapid Commun; 2018 Nov; 39(21):e1800502. PubMed ID: 30221798 [TBL] [Abstract][Full Text] [Related]
13. Achieving Fast Self-Healing and Reprocessing of Supertough Water-Dispersed "Living" Supramolecular Polymers Containing Dynamic Ditelluride Bonds under Visible Light. Fan W; Jin Y; Shi L; Du W; Zhou R; Lai S; Shen Y; Li Y ACS Appl Mater Interfaces; 2020 Feb; 12(5):6383-6395. PubMed ID: 31903744 [TBL] [Abstract][Full Text] [Related]
14. Tough stimuli-responsive supramolecular hydrogels with hydrogen-bonding network junctions. Guo M; Pitet LM; Wyss HM; Vos M; Dankers PY; Meijer EW J Am Chem Soc; 2014 May; 136(19):6969-77. PubMed ID: 24803288 [TBL] [Abstract][Full Text] [Related]
15. Dual-Crosslink Physical Hydrogels with High Toughness Based on Synergistic Hydrogen Bonding and Hydrophobic Interactions. Chang X; Geng Y; Cao H; Zhou J; Tian Y; Shan G; Bao Y; Wu ZL; Pan P Macromol Rapid Commun; 2018 Jul; 39(14):e1700806. PubMed ID: 29383780 [TBL] [Abstract][Full Text] [Related]
16. Supramolecular Engineering of Efficient Artificial Light-Harvesting Systems from Cyanovinylene Chromophores and Pillar[5]arene-Based Polymer Hosts. Wang XH; Lou XY; Lu T; Wang C; Tang J; Liu F; Wang Y; Yang YW ACS Appl Mater Interfaces; 2021 Jan; 13(3):4593-4604. PubMed ID: 33430588 [TBL] [Abstract][Full Text] [Related]
17. Cytosine-Functionalized Supramolecular Polymer-Mediated Cellular Behavior and Wound Healing. Cheng CC; Yang XJ; Fan WL; Lee AW; Lai JY Biomacromolecules; 2020 Sep; 21(9):3857-3866. PubMed ID: 32786524 [TBL] [Abstract][Full Text] [Related]
18. Supramolecular Modification of a Sequence-Controlled Collagen-Mimicking Polymer. Spaans S; Fransen PKH; Schotman MJG; van der Wulp R; Lafleur RPM; Kluijtmans SGJM; Dankers PYW Biomacromolecules; 2019 Jun; 20(6):2360-2371. PubMed ID: 31050892 [TBL] [Abstract][Full Text] [Related]
20. A Strategy Based on Aggregation-Induced Ratiometric Emission to Differentiate Molecular Weight of Supramolecular Polymers. Liu H; Hu Z; Zhang H; Li Q; Lou K; Ji X Angew Chem Int Ed Engl; 2022 Jun; 61(24):e202203505. PubMed ID: 35332640 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]