These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36432055)

  • 1. Interfacial Interaction of Clay and Saturates in Petroleum-Contaminated Soil: Effect of Clay Surface Heterogeneity.
    Yang Y; Liang X; Li X
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular adhesion at clay nanocomposite interfaces depends on counterion hydration-molecular dynamics simulation of montmorillonite/xyloglucan.
    Wang Y; Wohlert J; Bergenstråhle-Wohlert M; Kochumalayil JJ; Berglund LA; Tu Y; Ågren H
    Biomacromolecules; 2015 Jan; 16(1):257-65. PubMed ID: 25389796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of mineral species and petroleum components on thermal desorption behavior of petroleum-contaminated soil.
    Xiao Z; Guo S; Cheng F; Wang S
    Chemosphere; 2022 Nov; 307(Pt 1):135548. PubMed ID: 35803372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal desorption mechanism of n-dodecane on unsaturated clay: Experimental study and molecular dynamics simulation.
    Chen Z; Wang Y; Hu L
    Environ Pollut; 2023 Apr; 323():121228. PubMed ID: 36773689
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption, desorption and activities of acid phosphatase on various colloidal particles from an Ultisol.
    Huang Q; Liang W; Cai P
    Colloids Surf B Biointerfaces; 2005 Nov; 45(3-4):209-14. PubMed ID: 16198547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence mechanism of organic matter and low-molecular-weight organic acids on the interaction between minerals and PAHs.
    Yuan L; Wu Y; Fan Q; Li P; Liang J; Liu YH; Ma R; Li R; Shi L
    Sci Total Environ; 2023 Mar; 862():160872. PubMed ID: 36521591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Thermodynamic study of the adsorption of acridinium derivatives on the clay surface.
    Yoshida Y; Shimada T; Ishida T; Takagi S
    RSC Adv; 2020 Jun; 10(36):21360-21368. PubMed ID: 35518779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compositional changes of crude oil SARA fractions due to biodegradation and adsorption on colloidal support such as clays using Iatroscan.
    Ugochukwu UC; Jones MD; Head IM; Manning DA; Fialips CI
    Environ Sci Pollut Res Int; 2013 Sep; 20(9):6445-54. PubMed ID: 23589240
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of Naphthalene on Clay Minerals: A Molecular Dynamics Simulation Study.
    Chen Z; Hu L
    Materials (Basel); 2022 Jul; 15(15):. PubMed ID: 35897553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adsorption of reovirus to clay minerals: effects of cation-exchange capacity, cation saturation, and surface area.
    Lipson SM; Stotzky G
    Appl Environ Microbiol; 1983 Sep; 46(3):673-82. PubMed ID: 6639022
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of Cr (VI) anions on the Cu (II) adsorption behavior of two kinds of clay minerals in single and binary solution].
    Liu JJ; Liang DL; Wu XL; Qu GZ; Qian X
    Huan Jing Ke Xue; 2014 Jan; 35(1):254-62. PubMed ID: 24720213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic coupling and water bridging in adsorption hierarchy of biomolecules at water-clay interfaces.
    Wang J; Wilson RS; Aristilde L
    Proc Natl Acad Sci U S A; 2024 Feb; 121(7):e2316569121. PubMed ID: 38330016
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparative study of biopolymer adsorption on model anisotropic clay surfaces using quartz crystal microbalance with dissipation (QCM-D).
    Molaei N; Bashir Wani O; Bobicki ER
    J Colloid Interface Sci; 2022 Jun; 615():543-553. PubMed ID: 35152074
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of DNA with clay minerals and soil colloidal particles and protection against degradation by DNase.
    Cai P; Huang QY; Zhang XW
    Environ Sci Technol; 2006 May; 40(9):2971-6. PubMed ID: 16719099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradation of crude oil saturated fraction supported on clays.
    Ugochukwu UC; Jones MD; Head IM; Manning DA; Fialips CI
    Biodegradation; 2014 Feb; 25(1):153-65. PubMed ID: 23670057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crude oil polycyclic aromatic hydrocarbons removal via clay-microbe-oil interactions: Effect of acid activated clay minerals.
    Ugochukwu UC; Fialips CI
    Chemosphere; 2017 Jul; 178():65-72. PubMed ID: 28319743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward Accurate Adsorption Energetics on Clay Surfaces.
    Zen A; Roch LM; Cox SJ; Hu XL; Sorella S; Alfè D; Michaelides A
    J Phys Chem C Nanomater Interfaces; 2016 Nov; 120(46):26402-26413. PubMed ID: 27917256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple empirical model for phenanthrene adsorption on soil clay minerals.
    Zhao N; Ju F; Song Q; Pan H; Ling H
    J Hazard Mater; 2022 May; 429():127849. PubMed ID: 35236031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development and characterization of chlorophyll-amended montmorillonite clays for the adsorption and detoxification of benzene.
    Rivenbark KJ; Wang M; Lilly K; Tamamis P; Phillips TD
    Water Res; 2022 Aug; 221():118788. PubMed ID: 35777320
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced Arsenate Immobilization by Kaolinite via Heterogeneous Pathways during Ferrous Iron Oxidation.
    Wang X; Pu S; Ding J; Chen J; Liao P; Zhong D; Tsang DCW; Crittenden JC; Wang L
    Environ Sci Technol; 2024 Jul; 58(27):12123-12134. PubMed ID: 38934384
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.