These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 36432142)

  • 1. The Impact of Nitrile-Specifier Proteins on Indolic Carbinol and Nitrile Formation in Homogenates of
    Chroston ECM; Hielscher A; Strieker M; Wittstock U
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432142
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NSP-Dependent Simple Nitrile Formation Dominates upon Breakdown of Major Aliphatic Glucosinolates in Roots, Seeds, and Seedlings of
    Wittstock U; Meier K; Dörr F; Ravindran BM
    Front Plant Sci; 2016; 7():1821. PubMed ID: 27990154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of recombinant nitrile-specifier proteins (NSPs) of Arabidopsis thaliana: dependency on Fe(II) ions and the effect of glucosinolate substrate and reaction conditions.
    Kong XY; Kissen R; Bones AM
    Phytochemistry; 2012 Dec; 84():7-17. PubMed ID: 22954730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrile-specifier proteins involved in glucosinolate hydrolysis in Arabidopsis thaliana.
    Kissen R; Bones AM
    J Biol Chem; 2009 May; 284(18):12057-70. PubMed ID: 19224919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plant glucosinolate biosynthesis and breakdown pathways shape the rhizosphere bacterial/archaeal community.
    Chroston ECM; Bziuk N; Stauber EJ; Ravindran BM; Hielscher A; Smalla K; Wittstock U
    Plant Cell Environ; 2024 Jun; 47(6):2127-2145. PubMed ID: 38419355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genetic basis of constitutive and herbivore-induced ESP-independent nitrile formation in Arabidopsis.
    Burow M; Losansky A; Müller R; Plock A; Kliebenstein DJ; Wittstock U
    Plant Physiol; 2009 Jan; 149(1):561-74. PubMed ID: 18987211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ESP and ESM1 mediate indol-3-acetonitrile production from indol-3-ylmethyl glucosinolate in Arabidopsis.
    Burow M; Zhang ZY; Ober JA; Lambrix VM; Wittstock U; Gershenzon J; Kliebenstein DJ
    Phytochemistry; 2008 Feb; 69(3):663-71. PubMed ID: 17920088
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of indole glucosinolate breakdown products with antifeedant effects on Myzus persicae (green peach aphid).
    Kim JH; Lee BW; Schroeder FC; Jander G
    Plant J; 2008 Jun; 54(6):1015-26. PubMed ID: 18346197
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucosinolate Content in Dormant and Germinating
    Meier K; Ehbrecht MD; Wittstock U
    Front Plant Sci; 2019; 10():1549. PubMed ID: 31850033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thiocyanate-forming protein generates multiple products upon allylglucosinolate breakdown in Thlaspi arvense.
    Kuchernig JC; Backenköhler A; Lübbecke M; Burow M; Wittstock U
    Phytochemistry; 2011 Oct; 72(14-15):1699-709. PubMed ID: 21783213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron is a centrally bound cofactor of specifier proteins involved in glucosinolate breakdown.
    Backenköhler A; Eisenschmidt D; Schneegans N; Strieker M; Brandt W; Wittstock U
    PLoS One; 2018; 13(11):e0205755. PubMed ID: 30395611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in the enzymatic hydrolysis of glucosinolates increase the defense metabolite diversity in 19 Arabidopsis thaliana accessions.
    Hanschen FS; Pfitzmann M; Witzel K; Stützel H; Schreiner M; Zrenner R
    Plant Physiol Biochem; 2018 Mar; 124():126-135. PubMed ID: 29366972
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of glucosinolates and their breakdown products on necrotrophic fungi.
    Buxdorf K; Yaffe H; Barda O; Levy M
    PLoS One; 2013; 8(8):e70771. PubMed ID: 23940639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indole-3-acetonitrile production from indole glucosinolates deters oviposition by Pieris rapae.
    de Vos M; Kriksunov KL; Jander G
    Plant Physiol; 2008 Mar; 146(3):916-26. PubMed ID: 18192443
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of specifier proteins in glucosinolate-containing plants.
    Kuchernig JC; Burow M; Wittstock U
    BMC Evol Biol; 2012 Jul; 12():127. PubMed ID: 22839361
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantification of free plus conjugated indoleacetic acid in arabidopsis requires correction for the nonenzymatic conversion of indolic nitriles.
    Llić N; Normanly J; Cohen JD
    Plant Physiol; 1996 Jul; 111(3):781-8. PubMed ID: 8754680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystal structure of the nitrile-specifier protein NSP1 from Arabidopsis thaliana.
    Zhang W; Zhou Y; Wang K; Dong Y; Wang W; Feng Y
    Biochem Biophys Res Commun; 2017 Jun; 488(1):147-152. PubMed ID: 28479247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative biochemical characterization of nitrile-forming proteins from plants and insects that alter myrosinase-catalysed hydrolysis of glucosinolates.
    Burow M; Markert J; Gershenzon J; Wittstock U
    FEBS J; 2006 Jun; 273(11):2432-46. PubMed ID: 16704417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The glucosinolate breakdown product indole-3-carbinol acts as an auxin antagonist in roots of Arabidopsis thaliana.
    Katz E; Nisani S; Yadav BS; Woldemariam MG; Shai B; Obolski U; Ehrlich M; Shani E; Jander G; Chamovitz DA
    Plant J; 2015 May; 82(4):547-55. PubMed ID: 25758811
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Altered glucosinolate hydrolysis in genetically engineered Arabidopsis thaliana and its influence on the larval development of Spodoptera littoralis.
    Burow M; Müller R; Gershenzon J; Wittstock U
    J Chem Ecol; 2006 Nov; 32(11):2333-49. PubMed ID: 17061170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.