These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36432322)

  • 21. Mineral Composition and Its Control on Nanopores of Marine-Continental Transitional Shale from the Ningwu Basin, North China.
    Zhang BX; Fu XH; Shen YL; Zhang QH; Deng Z
    J Nanosci Nanotechnol; 2021 Jan; 21(1):168-180. PubMed ID: 33213621
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Nanoscale Surface Properties of Organic Matter and Clay Minerals in Shale.
    Tian S; Wang T; Li G; Sheng M; Zhang P
    Langmuir; 2019 Apr; 35(17):5711-5718. PubMed ID: 30917659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Insight into the Adsorption of Methane on Gas Shales and the Induced Shale Swelling.
    Tian W; Liu H
    ACS Omega; 2020 Dec; 5(49):31508-31517. PubMed ID: 33344802
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Supercritical methane adsorption measurement on shale using the isotherm modelling aspect.
    Mohd Aji AQ; Mohshim DF; Maulianda B; Elraeis KA
    RSC Adv; 2022 Jul; 12(32):20530-20543. PubMed ID: 35919182
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of CO
    Berghe G; Kline S; Burket S; Bivens L; Johnson D; Singh R
    J Mol Model; 2019 Sep; 25(9):293. PubMed ID: 31475300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Research of CO
    Chen G; Lu S; Zhang J; Xue Q; Han T; Xue H; Tian S; Li J; Xu C; Pervukhina M; Clennell B
    Sci Rep; 2016 Nov; 6():37579. PubMed ID: 27897232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergetic Effect of Water, Temperature, and Pressure on Methane Adsorption in Shale Gas Reservoirs.
    Han W; Li A; Memon A; Ma M
    ACS Omega; 2021 Jan; 6(3):2215-2229. PubMed ID: 33521461
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Competitive Sorption of CO
    Liu J; Xi S; Chapman WG
    Langmuir; 2019 Jun; 35(24):8144-8158. PubMed ID: 31030516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of Gas Diffusion Coefficients in Cores of Fine-Grained Lithologies Considering Stress and Adsorption Effects.
    Sun Z; Zhou S; Li P
    ACS Omega; 2023 Sep; 8(38):34720-34728. PubMed ID: 37779942
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Pore-Scale Simulation of Deep Shale Gas Flow Considering the Dual-Site Langmuir Adsorption Model Based on the Pore Network Model.
    Zhao C; Yang Y; Sun H; Zhong J; Zhang K; Wang K; Zhang L; Yao J
    Langmuir; 2024 Oct; 40(43):22844-22855. PubMed ID: 39405521
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigation of dynamical properties of methane in slit-like quartz pores using molecular simulation.
    Yang L; Zhou X; Zhang K; Zeng F; Wang Z
    RSC Adv; 2018 Sep; 8(59):33798-33816. PubMed ID: 35548817
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Experimental Study on the Methane Adsorption of Massive Shale Considering the Effective Stress and the Participation of Nanopores of Varying Sizes.
    Miao F; Wu D; Jia N; Xiao X; Sun W; Ding X; Zhai W; Chen X
    ACS Omega; 2023 May; 8(19):16935-16947. PubMed ID: 37214727
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular modeling on the pressure-driven methane desorption in illite nanoslits.
    Wang D; Zhang L; Cai C; Li N; Yang M
    J Mol Model; 2021 Feb; 27(3):83. PubMed ID: 33586049
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Multiscale modeling of gas flow behaviors in nanoporous shale matrix considering multiple transport mechanisms.
    Zhou W; Yang X; Liu X
    Phys Rev E; 2022 May; 105(5-2):055308. PubMed ID: 35706209
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effects of π-π Stacking on Shale Gas Adsorption and Transport in Nanopores.
    Chen F; Tang J; Wang J
    ACS Omega; 2023 Dec; 8(49):46577-46588. PubMed ID: 38107891
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competitive adsorption phenomenon in shale gas displacement processes.
    Shi J; Gong L; Sun S; Huang Z; Ding B; Yao J
    RSC Adv; 2019 Aug; 9(44):25326-25335. PubMed ID: 35530100
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of Kerogen Maturity, Water Content for Carbon Dioxide, Methane, and Their Mixture Adsorption and Diffusion in Kerogen: A Computational Investigation.
    Sui H; Zhang F; Wang Z; Wang D; Wang Y
    Langmuir; 2020 Aug; 36(33):9756-9769. PubMed ID: 32787125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Study on the Shale Gas Reservoir-Forming Characteristics of the Taiyuan Formation in the Eastern Qinshui Basin, China.
    Gao HT; Zhu YM; Shang FH; Chen CY
    J Nanosci Nanotechnol; 2021 Jan; 21(1):72-84. PubMed ID: 33213614
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Study on the Effects of Wettability and Pressure in Shale Matrix Nanopore Imbibition during Shut-in Process by Molecular Dynamics Simulations.
    Jiang W; Lv W; Jia N; Lu X; Wang L; Wang K; Mei Y
    Molecules; 2024 Mar; 29(5):. PubMed ID: 38474624
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanoscale Pore Fractal Characteristics of Permian Shale and Its Impact on Methane-Bearing Capacity: A Case Study from Southern North China Basin, Central China.
    Wei X; Chen Q; Zhang J; Nie H; Dang W; Li Z; Tang X; Lang Y; Lin L
    J Nanosci Nanotechnol; 2021 Jan; 21(1):139-155. PubMed ID: 33213619
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.