BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 36432368)

  • 1. Cascade Förster Resonance Energy Transfer Studies for Enhancement of Light Harvesting on Dye-Sensitized Solar Cells.
    Efa MT; Huang JC; Imae T
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432368
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced Photosensitization by Carbon Dots Co-adsorbing with Dye on p-Type Semiconductor (Nickel Oxide) Solar Cells.
    Etefa HF; Imae T; Yanagida M
    ACS Appl Mater Interfaces; 2020 Apr; 12(16):18596-18608. PubMed ID: 32237731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improvement in light harvesting in a dye sensitized solar cell based on cascade charge transfer.
    Yang L; Leung WW; Wang J
    Nanoscale; 2013 Aug; 5(16):7493-8. PubMed ID: 23831867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient plasmonic dye-sensitized solar cells with fluorescent Au-encapsulated C-dots.
    Narayanan R; Deepa M; Srivastava AK; Shivaprasad SM
    Chemphyschem; 2014 Apr; 15(6):1106-15. PubMed ID: 24677662
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-in-one approach towards efficient organic dye-sensitized solar cells: aggregation suppression, panchromatic absorption and resonance energy transfer.
    Patwari J; Sardar S; Liu B; Lemmens P; Pal SK
    Beilstein J Nanotechnol; 2017; 8():1705-1713. PubMed ID: 28875108
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel Ruthenium Sensitizers with a Phenothiazine Conjugated Bipyridyl Ligand for High-Efficiency Dye-Sensitized Solar Cells.
    She Z; Cheng Y; Zhang L; Li X; Wu D; Guo Q; Lan J; Wang R; You J
    ACS Appl Mater Interfaces; 2015 Dec; 7(50):27831-7. PubMed ID: 26624527
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-performance Förster resonance energy transfer (FRET)-based dye-sensitized solar cells: rational design of quantum dots for wide solar-spectrum utilization.
    Lee E; Kim C; Jang J
    Chemistry; 2013 Jul; 19(31):10280-6. PubMed ID: 23765414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Engineering of Organic D-A-π-A Dyes Incorporated with a Dibutyl-Fluorene Moiety for High-Performance Dye-Sensitized Solar Cells.
    Wubie GZ; Lu MN; Desta MA; Weldekirstos HD; Lee MM; Wu WT; Li SR; Wei TC; Sun SS
    ACS Appl Mater Interfaces; 2021 May; 13(20):23513-23522. PubMed ID: 33840194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Electrocatalytic Activity by RGO/MWCNTs/NiO Counter Electrode for Dye-sensitized Solar Cells.
    Al-Bahrani MR; Ahmad W; Mehnane HF; Chen Y; Cheng Z; Gao Y
    Nanomicro Lett; 2015; 7(3):298-306. PubMed ID: 30464975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence resonance energy transfer of CaF
    Wang L; Yang Z; Li YF; Yang R; Dai Z; Hu S; Sun L; Tong Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Sep; 202():76-80. PubMed ID: 29778708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of electron recombination of dye-sensitized solar cells based on TiO2 nanorod arrays sensitized with different dyes.
    Wang H; Liu M; Zhang M; Wang P; Miura H; Cheng Y; Bell J
    Phys Chem Chem Phys; 2011 Oct; 13(38):17359-66. PubMed ID: 21881630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-performance correlations of organic dyes with an electron-deficient diphenylquinoxaline moiety for dye-sensitized solar cells.
    Li SR; Lee CP; Yang PF; Liao CW; Lee MM; Su WL; Li CT; Lin HW; Ho KC; Sun SS
    Chemistry; 2014 Aug; 20(32):10052-64. PubMed ID: 25042065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comprehensive review of dye-sensitized solar cell optimal fabrication conditions, natural dye selection, and application-based future perspectives.
    Baby R; Nixon PD; Kumar NM; Subathra MSP; Ananthi N
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):371-404. PubMed ID: 34674131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Förster resonance energy transfer in dye-sensitized solar cells.
    Basham JI; Mor GK; Grimes CA
    ACS Nano; 2010 Mar; 4(3):1253-8. PubMed ID: 20307105
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 1,1'-Bis-(diphenylphosphino)ferrocene appended d
    Kushwaha A; Srivastava D; Prakash O; Kociok-Köhn G; Gosavi SW; Chauhan R; Muddassir M; Kumar A
    Dalton Trans; 2024 Apr; 53(15):6818-6829. PubMed ID: 38546210
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Designing Squaraines to Control Charge Injection and Recombination Processes in NiO-based Dye-Sensitized Solar Cells.
    Langmar O; Saccone D; Amat A; Fantacci S; Viscardi G; Barolo C; Costa RD; Guldi DM
    ChemSusChem; 2017 Jun; 10(11):2385-2393. PubMed ID: 28318143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bimetallic Implanted Plasmonic Photoanodes for TiO
    Kaur N; Bhullar V; Singh DP; Mahajan A
    Sci Rep; 2020 May; 10(1):7657. PubMed ID: 32376842
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.
    Suyitno S; Saputra TJ; Supriyanto A; Arifin Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():99-104. PubMed ID: 25875031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photophysical and electrochemical properties, and molecular structures of organic dyes for dye-sensitized solar cells.
    Ooyama Y; Harima Y
    Chemphyschem; 2012 Dec; 13(18):4032-80. PubMed ID: 22807392
    [TBL] [Abstract][Full Text] [Related]  

  • 20. New photovoltaic devices based on the sensitization of p-type semiconductors: challenges and opportunities.
    Odobel F; Le Pleux L; Pellegrin Y; Blart E
    Acc Chem Res; 2010 Aug; 43(8):1063-71. PubMed ID: 20455541
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.