These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 36432956)
1. Catalytic Reduction of Dyes and Antibacterial Activity of AgNPs@Zn@Alginate Composite Aerogel Beads. Benali F; Boukoussa B; Benkhedouda NE; Cheddad A; Issam I; Iqbal J; Hachemaoui M; Abboud M; Mokhtar A Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36432956 [TBL] [Abstract][Full Text] [Related]
2. Catalytic reduction of organic pollutants, antibacterial and antifungal activities of AgNPs@CuO nanoparticles-loaded mesoporous silica. Habeche F; Boukoussa B; Issam I; Mokhtar A; Lu X; Iqbal J; Hacini S; Hachemaoui M; Bengueddach A; Hamacha R Environ Sci Pollut Res Int; 2023 Mar; 30(11):30855-30873. PubMed ID: 36441305 [TBL] [Abstract][Full Text] [Related]
3. Zinc nanoparticles encapsulated in porous biopolymer beads for reduction of water pollutants and antimicrobial activity. Benali F; Boukoussa B; Issam I; Iqbal J; Mokhtar A; Hachemaoui M; Habeche F; Hacini S; Abboud M Int J Biol Macromol; 2023 Sep; 248():125832. PubMed ID: 37473883 [TBL] [Abstract][Full Text] [Related]
4. Composites beads based on Fe Hachemaoui M; Mokhtar A; Mekki A; Zaoui F; Abdelkrim S; Hacini S; Boukoussa B Int J Biol Macromol; 2020 Dec; 164():468-479. PubMed ID: 32682974 [TBL] [Abstract][Full Text] [Related]
5. Surface modification of cotton fabrics for antibacterial application by coating with AgNPs-alginate composite. Zahran MK; Ahmed HB; El-Rafie MH Carbohydr Polym; 2014 Aug; 108():145-52. PubMed ID: 24751258 [TBL] [Abstract][Full Text] [Related]
6. Catalytic behavior and antibacterial/antifungal activities of new MNPs/zeolite@alginate composite beads. Mekki A; Hachemaoui M; Mokhtar A; Issam I; Bennabi F; Iqbal J; Rahmani K; Bengueddach A; Boukoussa B Int J Biol Macromol; 2022 Feb; 198():37-45. PubMed ID: 34942209 [TBL] [Abstract][Full Text] [Related]
7. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Aboelfetoh EF; El-Shenody RA; Ghobara MM Environ Monit Assess; 2017 Jul; 189(7):349. PubMed ID: 28646435 [TBL] [Abstract][Full Text] [Related]
8. Antimicrobial and anticancer activities of porous chitosan-alginate biosynthesized silver nanoparticles. Venkatesan J; Lee JY; Kang DS; Anil S; Kim SK; Shim MS; Kim DG Int J Biol Macromol; 2017 May; 98():515-525. PubMed ID: 28147234 [TBL] [Abstract][Full Text] [Related]
9. Bio fabrication of silver nanoparticles with antibacterial and cytotoxic abilities using lichens. Alqahtani MA; Al Othman MR; Mohammed AE Sci Rep; 2020 Oct; 10(1):16781. PubMed ID: 33033304 [TBL] [Abstract][Full Text] [Related]
10. Multifunctional alginate nanoparticles containing nitric oxide donor and silver nanoparticles for biomedical applications. Urzedo AL; Gonçalves MC; Nascimento MHM; Lombello CB; Nakazato G; Seabra AB Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110933. PubMed ID: 32409079 [TBL] [Abstract][Full Text] [Related]
11. Development of silver nanoparticles loaded chitosan-alginate constructs with biomedical potentialities. Bilal M; Rasheed T; Iqbal HMN; Li C; Hu H; Zhang X Int J Biol Macromol; 2017 Dec; 105(Pt 1):393-400. PubMed ID: 28705499 [TBL] [Abstract][Full Text] [Related]
12. In situ synthesis of poly (γ- glutamic acid)/alginate/AgNP composite microspheres with antibacterial and hemostatic properties. Tong Z; Yang J; Lin L; Wang R; Cheng B; Chen Y; Tang L; Chen J; Ma X Carbohydr Polym; 2019 Oct; 221():21-28. PubMed ID: 31227161 [TBL] [Abstract][Full Text] [Related]
13. Radiation-induced synthesis of tween 80 stabilized silver nanoparticles for antibacterial applications. Bekhit M; Abu El-Naga MN; Sokary R; Fahim RA; El-Sawy NM J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(10):1210-1217. PubMed ID: 32614255 [TBL] [Abstract][Full Text] [Related]
14. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa. Ramalingam B; Parandhaman T; Das SK ACS Appl Mater Interfaces; 2016 Feb; 8(7):4963-76. PubMed ID: 26829373 [TBL] [Abstract][Full Text] [Related]
15. Green and facile synthesis of Ag nanoparticles using Crataegus pentagyna fruit extract (CP-AgNPs) for organic pollution dyes degradation and antibacterial application. Ebrahimzadeh MA; Naghizadeh A; Amiri O; Shirzadi-Ahodashti M; Mortazavi-Derazkola S Bioorg Chem; 2020 Jan; 94():103425. PubMed ID: 31740048 [TBL] [Abstract][Full Text] [Related]
16. Instant green synthesis of silver-based herbo-metallic colloidal nanosuspension in Terminalia bellirica fruit aqueous extract for catalytic and antibacterial applications. Patil S; Chaudhari G; Paradeshi J; Mahajan R; Chaudhari BL 3 Biotech; 2017 May; 7(1):36. PubMed ID: 28409425 [TBL] [Abstract][Full Text] [Related]
17. Green synthesis of silver nanoparticles using sodium alginate and tannic acid: characterization and anti-S. aureus activity. Tian S; Hu Y; Chen X; Liu C; Xue Y; Han B Int J Biol Macromol; 2022 Jan; 195():515-522. PubMed ID: 34920064 [TBL] [Abstract][Full Text] [Related]
18. Characterizations and application of CA/ZnO/AgNP composite nanofibers for sustained antibacterial properties. Jatoi AW; Kim IS; Ogasawara H; Ni QQ Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110077. PubMed ID: 31546450 [TBL] [Abstract][Full Text] [Related]