These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 36433049)

  • 1. Surface Modification of Electrospun Bioresorbable and Biostable Scaffolds by Pulsed DC Magnetron Sputtering of Titanium for Gingival Tissue Regeneration.
    Badaraev AD; Sidelev DV; Kozelskaya AI; Bolbasov EN; Tran TH; Nashchekin AV; Malashicheva AB; Rutkowski S; Tverdokhlebov SI
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antibacterial Activity and Cytocompatibility of Electrospun PLGA Scaffolds Surface-Modified by Pulsed DC Magnetron Co-Sputtering of Copper and Titanium.
    Badaraev AD; Lerner MI; Bakina OV; Sidelev DV; Tran TH; Krinitcyn MG; Malashicheva AB; Cherempey EG; Slepchenko GB; Kozelskaya AI; Rutkowski S; Tverdokhlebov SI
    Pharmaceutics; 2023 Mar; 15(3):. PubMed ID: 36986800
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrospun Poly-L-Lactic Acid Scaffolds Surface-Modified via Reactive Magnetron Sputtering Using Different Mixing Ratios of Nitrogen and Xenon.
    Maryin PV; Tran TH; Frolova AA; Buldakov MA; Choinzonov EL; Kozelskaya AI; Rutkowski S; Tverdokhlebov SI
    Polymers (Basel); 2023 Jul; 15(13):. PubMed ID: 37447614
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correction: Badaraev et al. Surface Modification of Electrospun Bioresorbable and Biostable Scaffolds by Pulsed DC Magnetron Sputtering of Titanium for Gingival Tissue Regeneration.
    Badaraev AD; Sidelev DV; Kozelskaya AI; Bolbasov EN; Tran TH; Nashchekin AV; Kostina AS; Malashicheva AB; Rutkowski S; Tverdokhlebov SI
    Polymers (Basel); 2024 Aug; 16(16):. PubMed ID: 39204607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface modification of electrospun poly-(l-lactic) acid scaffolds by reactive magnetron sputtering.
    Bolbasov EN; Maryin PV; Stankevich KS; Kozelskaya AI; Shesterikov EV; Khodyrevskaya YI; Nasonova MV; Shishkova DK; Kudryavtseva YA; Anissimov YG; Tverdokhlebov SI
    Colloids Surf B Biointerfaces; 2018 Feb; 162():43-51. PubMed ID: 29149727
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modification of PCL Scaffolds by Reactive Magnetron Sputtering: A Possibility for Modulating Macrophage Responses.
    Stankevich KS; Kudryavtseva VL; Bolbasov EN; Shesterikov EV; Larionova IV; Shapovalova YG; Domracheva LV; Volokhova AA; Kurzina IA; Zhukov YM; Malashicheva AB; Kzhyshkowska JG; Tverdokhlebov SI
    ACS Biomater Sci Eng; 2020 Jul; 6(7):3967-3974. PubMed ID: 33463309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of surface modification of poly-lactide-co-glycolide/carbon nanotube nanofibrous scaffolds by laminin protein on nerve tissue engineering.
    Nazeri N; Karimi R; Ghanbari H
    J Biomed Mater Res A; 2021 Feb; 109(2):159-169. PubMed ID: 32445230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Piezoelectric and Dielectric Electrospun Fluoropolymer Membranes for Oral Mucosa Regeneration: A Comparative Study.
    Chernova UV; Varakuta EY; Koniaeva AD; Leyman AE; Sagdullaeva SA; Plotnikov E; Melnik EY; Tran TH; Rutkowski S; Kudryavtseva VL; Buznik VM; Bolbasov E
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38607352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reactive Magnetron Plasma Modification of Electrospun PLLA Scaffolds with Incorporated Chloramphenicol for Controlled Drug Release.
    Volokhova AA; Fedorishin DA; Khvastunova AO; Spiridonova TI; Kozelskaya AI; Kzhyshkowska J; Tverdokhlebov SI; Kurzina I
    Polymers (Basel); 2022 Jan; 14(3):. PubMed ID: 35160362
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Entrapment of Fibronectin on Electrospun PLGA Scaffolds for Periodontal Tissue Engineering.
    Campos DM; Gritsch K; Salles V; Attik GN; Grosgogeat B
    Biores Open Access; 2014 Jun; 3(3):117-26. PubMed ID: 24940563
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of titanium dioxide nanowire incorporated poly(vinylidene fluoride-trifluoroethylene) scaffolds for bone tissue engineering applications.
    Augustine A; Augustine R; Hasan A; Raghuveeran V; Rouxel D; Kalarikkal N; Thomas S
    J Mater Sci Mater Med; 2019 Aug; 30(8):96. PubMed ID: 31414231
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coating of hydrophobins on three-dimensional electrospun poly(lactic-co-glycolic acid) scaffolds for cell adhesion.
    Hou S; Li X; Li X; Feng X
    Biofabrication; 2009 Sep; 1(3):035004. PubMed ID: 20811108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mesoporous bioactive glass surface modified poly(lactic-co-glycolic acid) electrospun fibrous scaffold for bone regeneration.
    Chen S; Jian Z; Huang L; Xu W; Liu S; Song D; Wan Z; Vaughn A; Zhan R; Zhang C; Wu S; Hu M; Li J
    Int J Nanomedicine; 2015; 10():3815-27. PubMed ID: 26082632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable Scaffolds for Vascular Regeneration Based on Electrospun Poly(L-Lactide-
    Śmiga-Matuszowicz M; Włodarczyk J; Skorupa M; Czerwińska-Główka D; Fołta K; Pastusiak M; Adamiec-Organiściok M; Skonieczna M; Turczyn R; Sobota M; Krukiewicz K
    Int J Mol Sci; 2023 Jan; 24(2):. PubMed ID: 36674709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber scaffolds for biomedical applications.
    Kim K; Yu M; Zong X; Chiu J; Fang D; Seo YS; Hsiao BS; Chu B; Hadjiargyrou M
    Biomaterials; 2003 Dec; 24(27):4977-85. PubMed ID: 14559011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and characterization of biodegradable multi layered electrospun nanofibers for corneal tissue engineering applications.
    Arabpour Z; Baradaran-Rafii A; Bakhshaiesh NL; Ai J; Ebrahimi-Barough S; Esmaeili Malekabadi H; Nazeri N; Vaez A; Salehi M; Sefat F; Ostad SN
    J Biomed Mater Res A; 2019 Oct; 107(10):2340-2349. PubMed ID: 31161710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyether Ether Ketone Coated with Ultra-Thin Films of Titanium Oxide and Zirconium Oxide Fabricated by DC Magnetron Sputtering for Biomedical Application.
    Akimchenko IO; Rutkowski S; Tran TH; Dubinenko GE; Petrov VI; Kozelskaya AI; Tverdokhlebov SI
    Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431515
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amphiphilic Crosslinked Four-Armed Poly(lactic-
    Dai J; Zhang Z; Bernaerts KV; Zhang Q; Zhang T
    ACS Biomater Sci Eng; 2022 Jun; 8(6):2428-2436. PubMed ID: 35588538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of hydrophilicity, biocompatibility and biodegradability of poly(ε-caprolactone) electrospun nanofiber scaffolds using poly(ethylene glycol) and poly(L-lactide-co-ε-caprolactone-co-glycolide) as additives for soft tissue engineering.
    Arbade GK; Srivastava J; Tripathi V; Lenka N; Patro TU
    J Biomater Sci Polym Ed; 2020 Sep; 31(13):1648-1670. PubMed ID: 32402230
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.