These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36433084)

  • 21. On pressure-driven Poiseuille flow with non-monotonic rheology.
    Talon L; Salin D
    Eur Phys J E Soft Matter; 2024 Aug; 47(8):52. PubMed ID: 39097849
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Finite Element Framework for Computational Fluid Dynamics in FEBio.
    Ateshian GA; Shim JJ; Maas SA; Weiss JA
    J Biomech Eng; 2018 Feb; 140(2):0210011-02100117. PubMed ID: 29238817
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-Newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms.
    Khan MO; Steinman DA; Valen-Sendstad K
    Int J Numer Method Biomed Eng; 2017 Jul; 33(7):. PubMed ID: 27696717
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries?
    Arzani A
    J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Rheological effects of blood in a nonplanar distal end-to-side anastomosis.
    Wang QQ; Ping BH; Xu QB; Wang W
    J Biomech Eng; 2008 Oct; 130(5):051009. PubMed ID: 19045516
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling hemodynamics in intracranial aneurysms: Comparing accuracy of CFD solvers based on finite element and finite volume schemes.
    Botti L; Paliwal N; Conti P; Antiga L; Meng H
    Int J Numer Method Biomed Eng; 2018 Sep; 34(9):e3111. PubMed ID: 29858530
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On the relative importance of rheology for image-based CFD models of the carotid bifurcation.
    Lee SW; Steinman DA
    J Biomech Eng; 2007 Apr; 129(2):273-8. PubMed ID: 17408332
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A finite difference method with subsampling for immersed boundary simulations of the capsule dynamics with viscoelastic membranes.
    Li P; Zhang J
    Int J Numer Method Biomed Eng; 2019 Jun; 35(6):e3200. PubMed ID: 30884167
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D numerical investigation of the fluid mechanics in a partially liquefied vitreous humor due to saccadic eye movement.
    Bayat J; Emdad H; Abouali O
    Comput Biol Med; 2020 Oct; 125():103955. PubMed ID: 32877738
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiparticle collision dynamics simulations of viscoelastic fluids: shear-thinning Gaussian dumbbells.
    Kowalik B; Winkler RG
    J Chem Phys; 2013 Mar; 138(10):104903. PubMed ID: 23514515
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bacterial gliding fluid dynamics on a layer of non-Newtonian slime: Perturbation and numerical study.
    Ali N; Asghar Z; Anwar Bég O; Sajid M
    J Theor Biol; 2016 May; 397():22-32. PubMed ID: 26903204
    [TBL] [Abstract][Full Text] [Related]  

  • 32. On the Influence of Viscoelastic Modeling in Fluid Flow Simulations of Gum Acrylonitrile Butadiene Rubber.
    Stieger S; Mitsoulis E; Walluch M; Ebner C; Kerschbaumer RC; Haselmann M; Mostafaiyan M; Kämpfe M; Kühnert I; Wießner S; Friesenbichler W
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301080
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical simulation of bubble induced shear in membrane bioreactors: effects of mixed liquor rheology and membrane configuration.
    Liu X; Wang Y; Waite TD; Leslie G
    Water Res; 2015 May; 75():131-45. PubMed ID: 25768986
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling cross model non-Newtonian fluid flow in porous media.
    Hauswirth SC; Bowers CA; Fowler CP; Schultz PB; Hauswirth AD; Weigand T; Miller CT
    J Contam Hydrol; 2020 Nov; 235():103708. PubMed ID: 32896762
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries.
    Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Understanding rheological hysteresis in soft glassy materials.
    Radhakrishnan R; Divoux T; Manneville S; Fielding SM
    Soft Matter; 2017 Mar; 13(9):1834-1852. PubMed ID: 28177015
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Pinch-off dynamics and dripping-onto-substrate (DoS) rheometry of complex fluids.
    Dinic J; Jimenez LN; Sharma V
    Lab Chip; 2017 Jan; 17(3):460-473. PubMed ID: 28001165
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lattice Boltzmann simulation of transient blood flow in arterial geometries using a regularised, viscoplastic and shear-thinning fluid.
    Hill BM; Leonardi CR
    Int J Numer Method Biomed Eng; 2021 Aug; 37(8):e3456. PubMed ID: 33742777
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Numerical description and experimental validation of a rheology model for non-Newtonian fluid flow in cancellous bone.
    Widmer Soyka RP; López A; Persson C; Cristofolini L; Ferguson SJ
    J Mech Behav Biomed Mater; 2013 Nov; 27():43-53. PubMed ID: 23867293
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical Reliability Study Based on Rheological Input for Bingham Paste Pumping Using a Finite Volume Approach in OpenFOAM.
    De Schryver R; El Cheikh K; Lesage K; Yardimci MY; De Schutter G
    Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.