These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 36433095)

  • 41. Development and Characterization of Yeast-Incorporated Antimicrobial Cellulose Biofilms for Edible Food Packaging Application.
    Atta OM; Manan S; Ahmed AAQ; Awad MF; Ul-Islam M; Subhan F; Ullah MW; Yang G
    Polymers (Basel); 2021 Jul; 13(14):. PubMed ID: 34301067
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Application of an Intelligent Sensor and Active Packaging System Based on the Bacterial Cellulose of
    Dirpan A; Djalal M; Kamaruddin I
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062505
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Active and intelligent packaging systems for a modern society.
    Realini CE; Marcos B
    Meat Sci; 2014 Nov; 98(3):404-19. PubMed ID: 25034453
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Transparent Bioplastic Derived from CO
    Tran TN; Mai BT; Setti C; Athanassiou A
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46667-46677. PubMed ID: 32955861
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Green and biodegradable composite films with novel antimicrobial performance based on cellulose.
    Wu Y; Luo X; Li W; Song R; Li J; Li Y; Li B; Liu S
    Food Chem; 2016 Apr; 197(Pt A):250-6. PubMed ID: 26616947
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Bio-Based pH Indicator Films for Intelligent Food Packaging Applications.
    Păușescu I; Dreavă DM; Bîtcan I; Argetoianu R; Dăescu D; Medeleanu M
    Polymers (Basel); 2022 Sep; 14(17):. PubMed ID: 36080695
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trends and challenges in the development of bio-based barrier coating materials for paper/cardboard food packaging; a review.
    Mujtaba M; Lipponen J; Ojanen M; Puttonen S; Vaittinen H
    Sci Total Environ; 2022 Dec; 851(Pt 2):158328. PubMed ID: 36037892
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Plant protein-based nanocomposite films: A review on the used nanomaterials, characteristics, and food packaging applications.
    Jafarzadeh S; Forough M; Amjadi S; Javan Kouzegaran V; Almasi H; Garavand F; Zargar M
    Crit Rev Food Sci Nutr; 2023; 63(29):9667-9693. PubMed ID: 35522084
    [TBL] [Abstract][Full Text] [Related]  

  • 49. An overview of biodegradable packaging in food industry.
    Shaikh S; Yaqoob M; Aggarwal P
    Curr Res Food Sci; 2021; 4():503-520. PubMed ID: 34401747
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Evaluation of the Antimicrobial, Thermal, Mechanical, and Barrier Properties of Corn Starch-Chitosan Biodegradable Films Reinforced with Cellulose Nanocrystals.
    Díaz-Cruz CA; Caicedo C; Jiménez-Regalado EJ; Díaz de León R; López-González R; Aguirre-Loredo RY
    Polymers (Basel); 2022 May; 14(11):. PubMed ID: 35683839
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Current Trends in the Utilization of Essential Oils for Polysaccharide- and Protein-Derived Food Packaging Materials.
    Zubair M; Shahzad S; Hussain A; Pradhan RA; Arshad M; Ullah A
    Polymers (Basel); 2022 Mar; 14(6):. PubMed ID: 35335477
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nanoreinforcement as a strategy to improve physical properties of biodegradable composite films based on biopolymers.
    Hoyos-Merlano NT; Borroni V; Rodriguez-Batiller MJ; Candal RJ; Herrera ML
    Food Res Int; 2022 Dec; 162(Pt B):112178. PubMed ID: 36461374
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Chitosan as a Valuable Biomolecule from Seafood Industry Waste in the Design of Green Food Packaging.
    Teixeira-Costa BE; Andrade CT
    Biomolecules; 2021 Oct; 11(11):. PubMed ID: 34827597
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biopolymer-based functional films for packaging applications: A review.
    Abdullah ; Cai J; Hafeez MA; Wang Q; Farooq S; Huang Q; Tian W; Xiao J
    Front Nutr; 2022; 9():1000116. PubMed ID: 36071940
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Overview of Nanocellulose in Food Packaging.
    Souza E; Gottschalk L; Freitas-Silva O
    Recent Pat Food Nutr Agric; 2020; 11(2):154-167. PubMed ID: 31322079
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Cellulose-based antimicrobial films incroporated with ZnO nanopillars on surface as biodegradable and antimicrobial packaging.
    Xie Y; Pan Y; Cai P
    Food Chem; 2022 Jan; 368():130784. PubMed ID: 34411864
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Functional biocompatible nanocomposite films consisting of selenium and zinc oxide nanoparticles embedded in gelatin/cellulose nanofiber matrices.
    Ahmadi A; Ahmadi P; Sani MA; Ehsani A; Ghanbarzadeh B
    Int J Biol Macromol; 2021 Apr; 175():87-97. PubMed ID: 33485892
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biopolymer-based nanocomposite films and coatings: recent advances in shelf-life improvement of fruits and vegetables.
    Basumatary IB; Mukherjee A; Katiyar V; Kumar S
    Crit Rev Food Sci Nutr; 2022; 62(7):1912-1935. PubMed ID: 33249872
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent Advancements in Smart Biogenic Packaging: Reshaping the Future of the Food Packaging Industry.
    Chaudhary V; Punia Bangar S; Thakur N; Trif M
    Polymers (Basel); 2022 Feb; 14(4):. PubMed ID: 35215741
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose.
    Masmoudi F; Bessadok A; Dammak M; Jaziri M; Ammar E
    Environ Sci Pollut Res Int; 2016 Oct; 23(20):20904-20914. PubMed ID: 27488705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.