These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 36433126)

  • 1. Enhancing the Mechanical Properties of 3D-Printed Waterborne Polyurethane-Urea and Cellulose Nanocrystal Scaffolds through Crosslinking.
    Vadillo J; Larraza I; Calvo-Correas T; Martin L; Derail C; Eceiza A
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Design of a Waterborne Polyurethane-Urea Ink for Direct Ink Writing 3D Printing.
    Vadillo J; Larraza I; Calvo-Correas T; Gabilondo N; Derail C; Eceiza A
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Cellulose Nanofibers' Structure and Incorporation Route in Waterborne Polyurethane-Urea Based Nanocomposite Inks.
    Larraza I; Vadillo J; Calvo-Correas T; Tejado A; Martin L; Arbelaiz A; Eceiza A
    Polymers (Basel); 2022 Oct; 14(21):. PubMed ID: 36365510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low Solids Emulsion Gels Based on Nanocellulose for 3D-Printing.
    Huan S; Ajdary R; Bai L; Klar V; Rojas OJ
    Biomacromolecules; 2019 Feb; 20(2):635-644. PubMed ID: 30240194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suture Fiber Reinforcement of a 3D Printed Gelatin Scaffold for Its Potential Application in Soft Tissue Engineering.
    Choi DJ; Choi K; Park SJ; Kim YJ; Chung S; Kim CH
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Composites of waterborne polyurethane and cellulose nanofibers for 3D printing and bioapplications.
    Chen RD; Huang CF; Hsu SH
    Carbohydr Polym; 2019 May; 212():75-88. PubMed ID: 30832883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution 3D printing of xanthan gum/nanocellulose bio-inks.
    Baniasadi H; Kimiaei E; Polez RT; Ajdary R; Rojas OJ; Österberg M; Seppälä J
    Int J Biol Macromol; 2022 Jun; 209(Pt B):2020-2031. PubMed ID: 35500781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct Ink Write (DIW) 3D Printed Cellulose Nanocrystal Aerogel Structures.
    Li VC; Dunn CK; Zhang Z; Deng Y; Qi HJ
    Sci Rep; 2017 Aug; 7(1):8018. PubMed ID: 28808235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D printed scaffolds with gradient porosity based on a cellulose nanocrystal hydrogel.
    Sultan S; Mathew AP
    Nanoscale; 2018 Mar; 10(9):4421-4431. PubMed ID: 29451572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionalized Cellulose Nanocrystals as Active Reinforcements for Light-Actuated 3D-Printed Structures.
    Müller LAE; Zingg A; Arcifa A; Zimmermann T; Nyström G; Burgert I; Siqueira G
    ACS Nano; 2022 Nov; 16(11):18210-18222. PubMed ID: 36256903
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignin-Based Direct Ink Printed Structural Scaffolds.
    Jiang B; Yao Y; Liang Z; Gao J; Chen G; Xia Q; Mi R; Jiao M; Wang X; Hu L
    Small; 2020 Aug; 16(31):e1907212. PubMed ID: 32597027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cellulose and Graphene Based Polyurethane Nanocomposites for FDM 3D Printing: Filament Properties and Printability.
    Larraza I; Vadillo J; Calvo-Correas T; Tejado A; Olza S; Peña-Rodríguez C; Arbelaiz A; Eceiza A
    Polymers (Basel); 2021 Mar; 13(5):. PubMed ID: 33803415
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printed Porous Cellulose Nanocomposite Hydrogel Scaffolds.
    Sultan S; Mathew AP
    J Vis Exp; 2019 Apr; (146):. PubMed ID: 31081812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization.
    Feng X; Yang Z; Chmely S; Wang Q; Wang S; Xie Y
    Carbohydr Polym; 2017 Aug; 169():272-281. PubMed ID: 28504146
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printed Porous Nanocellulose-Based Scaffolds As Carriers for Immobilization of Glycosyltransferases.
    Lackner F; Liu H; Štiglic AD; Bračič M; Kargl R; Nidetzky B; Mohan T; Kleinschek KS
    ACS Appl Bio Mater; 2022 Dec; 5(12):5728-5740. PubMed ID: 36469033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D Printing of Thermal Insulating Polyimide/Cellulose Nanocrystal Composite Aerogels with Low Dimensional Shrinkage.
    Feng C; Yu SS
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771171
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D printing of cellulose nanocrystals based composites to build robust biomimetic scaffolds for bone tissue engineering.
    N'Gatta KM; Belaid H; El Hayek J; Assanvo EF; Kajdan M; Masquelez N; Boa D; Cavaillès V; Bechelany M; Salameh C
    Sci Rep; 2022 Dec; 12(1):21244. PubMed ID: 36482172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of cell deposition by self-absorbent capability of freeze-dried 3D-bioprinted scaffolds derived from cellulose material-alginate hydrogels.
    Li Z; Ramos A; Li MC; Li Z; Bhatta S; Jeyaseelan A; Li Y; Wu Q; Yao S; Xu J
    Biomed Phys Eng Express; 2020 May; 6(4):045009. PubMed ID: 33444270
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tripolyphosphate-Crosslinked Chitosan/Gelatin Biocomposite Ink for 3D Printing of Uniaxial Scaffolds.
    Fischetti T; Celikkin N; Contessi Negrini N; Farè S; Swieszkowski W
    Front Bioeng Biotechnol; 2020; 8():400. PubMed ID: 32426350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.