These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36433235)

  • 1. A Complete Framework for a Behavioral Planner with Automated Vehicles: A Car-Sharing Fleet Relocation Approach.
    Arizala A; Zubizarreta A; Pérez J
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Decentralized Platoon Join-in-Middle Protocol Considering Communication Delay for Connected and Automated Vehicle.
    Lee G; Jung JI
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Collision-avoidance lane change control method for enhancing safety for connected vehicle platoon in mixed traffic environment.
    Ma Y; Liu Q; Fu J; Liufu K; Li Q
    Accid Anal Prev; 2023 May; 184():106999. PubMed ID: 36780868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed Urban Platooning towards High Flexibility, Adaptability, and Stability.
    Jeong S; Baek Y; Son SH
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explicitly incorporating surrogate safety measures into connected and automated vehicle longitudinal control objectives for enhancing platoon safety.
    Dai Y; Wang C; Xie Y
    Accid Anal Prev; 2023 Apr; 183():106975. PubMed ID: 36696746
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Truck Platooning Under Real Traffic Conditions: First Insights on Behavioral Adaptations and Gap Preference of Professional Drivers.
    Castritius SM; Dietz CJ; Schubert P; Moeller J; Morvilius S; Hammer S; Tran CA; Haas CT
    Hum Factors; 2021 Sep; 63(6):1033-1045. PubMed ID: 32149526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a Framework for Generating Driving Safety Assessment Scenarios for Automated Vehicles.
    Ko W; Park S; Yun J; Park S; Yun I
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of assignments of dedicated automated vehicle lanes and inter-vehicle distances of automated vehicle platoons on car-following performance of nearby manual vehicle drivers.
    Chen F; Lu G; Tan H; Liu M; Wan H
    Accid Anal Prev; 2022 Nov; 177():106826. PubMed ID: 36081223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Velocity control in car-following behavior with autonomous vehicles using reinforcement learning.
    Wang Z; Huang H; Tang J; Meng X; Hu L
    Accid Anal Prev; 2022 Sep; 174():106729. PubMed ID: 35700685
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hierarchical hybrid system of integrated longitudinal and lateral control for intelligent vehicles.
    Chen K; Pei X; Okuda H; Zhu M; Guo X; Guo K; Suzuki T
    ISA Trans; 2020 Nov; 106():200-212. PubMed ID: 32674851
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acceptance of truck platooning by professional drivers on German highways. A mixed methods approach.
    Castritius SM; Hecht H; Möller J; Dietz CJ; Schubert P; Bernhard C; Morvilius S; Haas CT; Hammer S
    Appl Ergon; 2020 May; 85():103042. PubMed ID: 31929025
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Collaborative Autonomous Driving-A Survey of Solution Approaches and Future Challenges.
    Malik S; Khan MA; El-Sayed H
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34072603
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A longitudinal inter-vehicle distance controller application for autonomous vehicle platoons.
    Gunagwera A; Zengin AT
    PeerJ Comput Sci; 2022; 8():e990. PubMed ID: 35634117
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trust and Distrust of Automated Parking in a Tesla Model X.
    Tenhundfeld NL; de Visser EJ; Ries AJ; Finomore VS; Tossell CC
    Hum Factors; 2020 Mar; 62(2):194-210. PubMed ID: 31419163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantifying effects of reverse linear perspective as a visual cue on vehicle and platoon crash risk variations in car-following using path analysis.
    Ding N; Lu Z; Jiao N; Liu Z; Lu L
    Accid Anal Prev; 2021 Sep; 159():106215. PubMed ID: 34130057
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection and Risk Analysis with Lane-Changing Decision Algorithms for Autonomous Vehicles.
    Mechernene A; Judalet V; Chaibet A; Boukhnifer M
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365846
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Radio Environment Map Reconstruction Techniques to Platoon-based Cellular V2X Communications.
    Roger S; Botella C; Pérez-Solano JJ; Perez J
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32344805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Autonomous Controller-Aware Scheduling of Intra-Platoon V2V Communications.
    Sroka P; Ström E; Svensson T; Kliks A
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616656
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficiency performance and safety evaluation of the responsibility-sensitive safety in freeway car-following scenarios using automated longitudinal controls.
    Hassanin O; Wang X; Wu X; Xu X
    Accid Anal Prev; 2022 Nov; 177():106799. PubMed ID: 36081222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Adaptive Traffic-Flow Management System with a Cooperative Transitional Maneuver for Vehicular Platoons.
    Hota L; Nayak BP; Sahoo B; Chong PHJ; Kumar A
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904684
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.