These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 36433262)

  • 1. Evaluation of Axial Preload in Different-Frequency Smart Bolts by Laser Ultrasound.
    Ren G; Zhan H; Liu Z; Jiang W; Li R; Liu S
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasonic Measurement of Axial Preload in High-Frequency Nickel-Based Superalloy Smart Bolt.
    Liu S; Sun Z; Ren G; Liao C; He X; Luo K; Li R; Jiang W; Zhan H
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication and characterization of smart titanium alloy bolt based on high-frequency piezoelectric thin-film.
    Zhang M; Liu S; Zhan H; Sun Z; Qiu W; Ren G; Li R; Xiang X; Wang H
    Rev Sci Instrum; 2024 Mar; 95(3):. PubMed ID: 38441428
    [TBL] [Abstract][Full Text] [Related]  

  • 4. PMUT-Based System for Continuous Monitoring of Bolted Joints Preload.
    Sanvito S; Passoni M; Giusti D; Terenzi M; Prelini C; La Mura M; Savoia AS
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000928
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Axial Load Measurement of Bolts with Different Clamping Lengths Based on High-Frequency Ultrasonic ZnO Film Sensor.
    Jing X; Dai H; Xu W; Zhao Y; Zhang J; Yang B
    Sensors (Basel); 2023 Apr; 23(7):. PubMed ID: 37050771
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Estimation of clamping force in high-tension bolts through ultrasonic velocity measurement.
    Jhang KY; Quan HH; Ha J; Kim NY
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1339-42. PubMed ID: 16814830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bolt axial stress measurement based on a mode-converted ultrasound method using an electromagnetic acoustic transducer.
    Ding X; Wu X; Wang Y
    Ultrasonics; 2014 Mar; 54(3):914-20. PubMed ID: 24289900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the Length of Installed Rock Bolt Based on Stress Wave Reflection by Using a Giant Magnetostrictive (GMS) Actuator and a PZT Sensor.
    Luo M; Li W; Wang B; Fu Q; Song G
    Sensors (Basel); 2017 Feb; 17(3):. PubMed ID: 28241503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preload Monitoring in Bolted Connection Using Piezoelectric-Based Smart Interface.
    Huynh TC; Dang NL; Kim JT
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30135407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Review of Rock Bolt Monitoring Using Smart Sensors.
    Song G; Li W; Wang B; Ho SC
    Sensors (Basel); 2017 Apr; 17(4):. PubMed ID: 28379167
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser ultrasonic nondestructive evaluation of sub-millimeter-level crack growth in the rail foot weld.
    Ren G; Sun Z; Dai X; Liu S; Zhang X; Chen X; Yan M; Liu S
    Appl Opt; 2022 Aug; 61(22):6414-6419. PubMed ID: 36255865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Correction of coupling error in contact-type ultrasonic evaluation of bolt axial stress.
    Xingliang H; Yixiang D; Qingwen F; Qingyu L; Ping C; Xia Y; Lingwei Z; Yu R; Mengfan W
    Ultrasonics; 2022 Aug; 124():106763. PubMed ID: 35598582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fully noncontact inspection of closed surface crack with nonlinear laser ultrasonic testing method.
    Kou X; Pei C; Chen Z
    Ultrasonics; 2021 Jul; 114():106426. PubMed ID: 33812273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Contact Inspection of Railhead via Laser-Generated Rayleigh Waves and an Enhanced Matching Pursuit to Assist Detection of Surface and Subsurface Defects.
    Ghafoor I; Tse PW; Rostami J; Ng KM
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33923270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring of Pre-Load on Rock Bolt Using Piezoceramic-Transducer Enabled Time Reversal Method.
    Huo L; Wang B; Chen D; Song G
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29077009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superposition model of mode shapes composed of travelling torsional guided waves excited by multiple circular transducer arrays in pipes.
    Niu X; Tee KF; Marques HR
    Ultrasonics; 2021 Sep; 116():106507. PubMed ID: 34216990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An electromechanical coupling model of a bending vibration type piezoelectric ultrasonic transducer.
    Zhang Q; Shi S; Chen W
    Ultrasonics; 2016 Mar; 66():18-26. PubMed ID: 26705603
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Shear Performance of Multi-Bolt Shear Connectors.
    Xie R; Yang T; Li B; Liu S; Zhang Y
    Materials (Basel); 2023 Jan; 16(3):. PubMed ID: 36770038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Defect Visualization of a Steel Structure Using a Piezoelectric Line Sensor Based on Laser Ultrasonic Guided Wave.
    Kang SH; Han DH; Kang LH
    Materials (Basel); 2019 Dec; 12(23):. PubMed ID: 31810179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preload Monitoring of Bolted L-Shaped Lap Joints Using Virtual Time Reversal Method.
    Du F; Xu C; Wu G; Zhang J
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29899313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.