BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36433266)

  • 1. Force-Sensorless Identification and Classification of Tissue Biomechanical Parameters for Robot-Assisted Palpation.
    Gutierrez-Giles A; Padilla-Castañeda MA; Alvarez-Icaza L; Gutierrez-Herrera E
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433266
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of realistic force feedback in a robotic assisted minimally invasive surgery system.
    Moradi Dalvand M; Shirinzadeh B; Nahavandi S; Smith J
    Minim Invasive Ther Allied Technol; 2014 Jun; 23(3):127-35. PubMed ID: 24328984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integration of force reflection with tactile sensing for minimally invasive robotics-assisted tumor localization.
    Talasaz A; Patel RV
    IEEE Trans Haptics; 2013; 6(2):217-28. PubMed ID: 24808305
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Finite-element modeling of soft tissue rolling indentation.
    Sangpradit K; Liu H; Dasgupta P; Althoefer K; Seneviratne LD
    IEEE Trans Biomed Eng; 2011 Dec; 58(12):3319-27. PubMed ID: 21257372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vibro-Acoustic Sensing of Instrument Interactions as a Potential Source of Texture-Related Information in Robotic Palpation.
    Sühn T; Esmaeili N; Mattepu SY; Spiller M; Boese A; Urrutia R; Poblete V; Hansen C; Lohmann CH; Illanes A; Friebe M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transparent Pneumatic Tactile Sensors for Soft Biomedical Robotics.
    Zhao S; Nguyen CC; Hoang TT; Do TN; Phan HP
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pneumatically driven surgical instrument capable of estimating translational force and grasping force.
    Miyazaki R; Kanno T; Kawashima K
    Int J Med Robot; 2019 Jun; 15(3):e1983. PubMed ID: 30648783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Haptic Intracorporeal Palpation Using a Cable-Driven Parallel Robot: A User Study.
    Saracino A; Oude-Vrielink TJC; Menciassi A; Sinibaldi E; Mylonas GP
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3452-3463. PubMed ID: 32746002
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Action Augmentation of Tactile Perception for Soft-Body Palpation.
    Scimeca L; Hughes J; Maiolino P; He L; Nanayakkara T; Iida F
    Soft Robot; 2022 Apr; 9(2):280-292. PubMed ID: 34432994
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Palpation-Based Multi-Tumor Detection Method Considering Moving Distance for Robot-assisted Minimally Invasive Surgery.
    Yun Y; Ju F; Zhang Y; Zhu C; Wang Y; Guo H; Wei X; Chen B
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4899-4902. PubMed ID: 33019087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction Force Mapping by 3-Axis Tactile Sensing With Arbitrary Angles for Tissue Hard-Inclusion Localization.
    Li T; Pan A; Ren H
    IEEE Trans Biomed Eng; 2021 Jan; 68(1):26-35. PubMed ID: 32396067
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Survey on Force Sensing Techniques in Robot-Assisted Minimally Invasive Surgery.
    Wang W; Wang J; Luo Y; Wang X; Song H
    IEEE Trans Haptics; 2023; 16(4):702-718. PubMed ID: 37922188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methods and mechanisms for contact feedback in a robot-assisted minimally invasive environment.
    Tavakoli M; Aziminejad A; Patel RV; Moallem M
    Surg Endosc; 2006 Oct; 20(10):1570-9. PubMed ID: 16897288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A tactile sensor using the acoustic reflection principle for assessing the contact force component in laparoscopic tumor localization.
    Ly HH; Tanaka Y; Fujiwara M
    Int J Comput Assist Radiol Surg; 2021 Feb; 16(2):289-299. PubMed ID: 33389604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Innovative optical microsystem for static and dynamic tissue diagnosis in minimally invasive surgical operations.
    Ahmadi R; Packirisamy M; Dargahi J
    J Biomed Opt; 2012 Aug; 17(8):081416. PubMed ID: 23224177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the Localization of Uterine Leiomyomas Through Cutaneous Softness Rendering for Robot-Assisted Surgical Palpation Applications.
    Doria D; Fani S; Giannini A; Simoncini T; Bianchi M
    IEEE Trans Haptics; 2021; 14(3):503-512. PubMed ID: 33556016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disposable Stiffness Sensor for Endoscopic Examination.
    Faragasso A; Bimbo JO; Yamashita A; Asama H
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():4309-4312. PubMed ID: 30441307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A continuum body force sensor designed for flexible surgical robotics devices.
    Noh Y; Secco EL; Sareh S; Wurdemann H; Faragasso A; Back J; Liu H; Sklar E; Althoefer K
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3711-4. PubMed ID: 25570797
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An actuated force feedback-enabled laparoscopic instrument for robotic-assisted surgery.
    Moradi Dalvand M; Shirinzadeh B; Shamdani AH; Smith J; Zhong Y
    Int J Med Robot; 2014 Mar; 10(1):11-21. PubMed ID: 23640908
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stiffness Assessment and Lump Detection in Minimally Invasive Surgery Using In-House Developed Smart Laparoscopic Forceps.
    Othman W; Vandyck KE; Abril C; Barajas-Gamboa JS; Pantoja JP; Kroh M; Qasaimeh MA
    IEEE J Transl Eng Health Med; 2022; 10():2500410. PubMed ID: 35774413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.