These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36433469)

  • 1. IMU-Based Classification of Locomotion Modes, Transitions, and Gait Phases with Convolutional Recurrent Neural Networks.
    Marcos Mazon D; Groefsema M; Schomaker LRB; Carloni R
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. IMU-Based Deep Neural Networks: Prediction of Locomotor and Transition Intentions of an Osseointegrated Transfemoral Amputee.
    Bruinsma J; Carloni R
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():1079-1088. PubMed ID: 34097612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ambulation Mode Classification of Individuals with Transfemoral Amputation through A-Mode Sonomyography and Convolutional Neural Networks.
    Murray R; Mendez J; Gabert L; Fey NP; Liu H; Lenzi T
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502055
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An intent recognition strategy for transfemoral amputee ambulation across different locomotion modes.
    Young AJ; Simon A; Hargrove LJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1587-90. PubMed ID: 24110005
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of machine learning and deep learning-based methods for locomotion mode recognition using a single inertial measurement unit.
    Vu HTT; Cao HL; Dong D; Verstraten T; Geeroms J; Vanderborght B
    Front Neurorobot; 2022; 16():923164. PubMed ID: 36524219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A CNN-Based Method for Intent Recognition Using Inertial Measurement Units and Intelligent Lower Limb Prosthesis.
    Su BY; Wang J; Liu SQ; Sheng M; Jiang J; Xiang K
    IEEE Trans Neural Syst Rehabil Eng; 2019 May; 27(5):1032-1042. PubMed ID: 30969928
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Locomotion Mode Transition Prediction Based on Gait-Event Identification Using Wearable Sensors and Multilayer Perceptrons.
    Su B; Liu YX; Gutierrez-Farewik EM
    Sensors (Basel); 2021 Nov; 21(22):. PubMed ID: 34833549
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A training method for locomotion mode prediction using powered lower limb prostheses.
    Young AJ; Simon AM; Hargrove LJ
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):671-7. PubMed ID: 24184753
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crossover study of amputee stair ascent and descent biomechanics using Genium and C-Leg prostheses with comparison to non-amputee control.
    Lura DJ; Wernke MW; Carey SL; Kahle JT; Miro RM; Highsmith MJ
    Gait Posture; 2017 Oct; 58():103-107. PubMed ID: 28763712
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding LSTM Network Behaviour of IMU-Based Locomotion Mode Recognition for Applications in Prostheses and Wearables.
    Sherratt F; Plummer A; Iravani P
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33578842
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Level walking and stair climbing gait in above-knee amputees.
    Bae TS; Choi K; Mun M
    J Med Eng Technol; 2009; 33(2):130-5. PubMed ID: 19205992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Method for Locomotion Mode Identification Using Muscle Synergies.
    Afzal T; Iqbal K; White G; Wright AB
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):608-617. PubMed ID: 27362983
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of Decision Tree Structure with Improved BPNN Nodes for High-Accuracy Locomotion Mode Recognition Using a Single IMU.
    Han Y; Liu C; Yan L; Ren L
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33450967
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IMU-Based Locomotion Mode Identification for Transtibial Prostheses, Orthoses, and Exoskeletons.
    Gao F; Liu G; Liang F; Liao WH
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1334-1343. PubMed ID: 32286999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental Features Recognition for Lower Limb Prostheses Toward Predictive Walking.
    Zhang K; Xiong C; Zhang W; Liu H; Lai D; Rong Y; Fu C
    IEEE Trans Neural Syst Rehabil Eng; 2019 Mar; 27(3):465-476. PubMed ID: 30703033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prosthetic gait of unilateral lower-limb amputees with current and novel prostheses: A pilot study.
    De Pauw K; Serrien B; Baeyens JP; Cherelle P; De Bock S; Ghillebert J; Bailey SP; Lefeber D; Roelands B; Vanderborght B; Meeusen R
    Clin Biomech (Bristol); 2020 Jan; 71():59-67. PubMed ID: 31704536
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gradient-Based Multi-Objective Feature Selection for Gait Mode Recognition of Transfemoral Amputees.
    Khademi G; Mohammadi H; Simon D
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30634668
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Myoelectric walking mode classification for transtibial amputees.
    Miller JD; Beazer MS; Hahn ME
    IEEE Trans Biomed Eng; 2013 Oct; 60(10):2745-50. PubMed ID: 23708765
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Light-Weight Artificial Neural Network for Recognition of Activities of Daily Living.
    Mohamed SA; Martinez-Hernandez U
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of inertial properties of transfemoral prosthesis on leg swing motion during stair ascent.
    Inoue K; Hobara H; Wada T
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1591-4. PubMed ID: 24110006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.