These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36433469)

  • 21. High-density EMG, IMU, kinetic, and kinematic open-source data for comprehensive locomotion activities.
    Dimitrov H; Bull AMJ; Farina D
    Sci Data; 2023 Nov; 10(1):789. PubMed ID: 37949938
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Locomotion Mode Recognition Algorithm Based on Gaussian Mixture Model Using IMU Sensors.
    Shin D; Lee S; Hwang S
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33920969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses.
    Young AJ; Kuiken TA; Hargrove LJ
    J Neural Eng; 2014 Oct; 11(5):056021. PubMed ID: 25242111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Detecting Walking Challenges in Gait Patterns Using a Capacitive Sensor Floor and Recurrent Neural Networks.
    Hoffmann R; Brodowski H; Steinhage A; Grzegorzek M
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33562548
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Performance of multiple neural networks in predicting lower limb joint moments using wearable sensors.
    Altai Z; Boukhennoufa I; Zhai X; Phillips A; Moran J; Liew BXW
    Front Bioeng Biotechnol; 2023; 11():1215770. PubMed ID: 37583712
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions.
    Camargo J; Ramanathan A; Flanagan W; Young A
    J Biomech; 2021 Apr; 119():110320. PubMed ID: 33677231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-Time On-Board Recognition of Continuous Locomotion Modes for Amputees With Robotic Transtibial Prostheses.
    Xu D; Feng Y; Mai J; Wang Q
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2015-2025. PubMed ID: 30334741
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dynamic analysis of above-knee amputee gait.
    Bae TS; Choi K; Hong D; Mun M
    Clin Biomech (Bristol); 2007 Jun; 22(5):557-66. PubMed ID: 17321021
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gait termination on a declined surface in trans-femoral amputees: Impact of using microprocessor-controlled limb system.
    Abdulhasan ZM; Scally AJ; Buckley JG
    Clin Biomech (Bristol); 2018 Aug; 57():35-41. PubMed ID: 29908391
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multiple Classification of Gait Using Time-Frequency Representations and Deep Convolutional Neural Networks.
    Jung D; Nguyen MD; Park M; Kim J; Mun KR
    IEEE Trans Neural Syst Rehabil Eng; 2020 Apr; 28(4):997-1005. PubMed ID: 32142445
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Wearable Sensor-Based Step Length Estimation During Overground Locomotion Using a Deep Convolutional Neural Network.
    Jin H; Kang I; Choi G; Molinaro DD; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4897-4900. PubMed ID: 34892306
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits.
    Au S; Berniker M; Herr H
    Neural Netw; 2008 May; 21(4):654-66. PubMed ID: 18499394
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Deep learning with an attention mechanism for continuous biomechanical motion estimation across varied activities.
    Ding G; Plummer A; Georgilas I
    Front Bioeng Biotechnol; 2022; 10():1021505. PubMed ID: 36324889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of Timing to Switch Control Mode in Powered Knee Prostheses during Task Transitions.
    Zhang F; Liu M; Huang H
    PLoS One; 2015; 10(7):e0133965. PubMed ID: 26197084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Stair Ascent and Descent Controller for a Powered Ankle Prosthesis.
    Culver S; Bartlett H; Shultz A; Goldfarb M
    IEEE Trans Neural Syst Rehabil Eng; 2018 May; 26(5):993-1002. PubMed ID: 29752234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Human Locomotion Classification for Different Terrains Using Machine Learning Techniques.
    Negi S; Negi PCBS; Sharma S; Sharma N
    Crit Rev Biomed Eng; 2020; 48(4):199-209. PubMed ID: 33463957
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intuitive control of a powered prosthetic leg during ambulation: a randomized clinical trial.
    Hargrove LJ; Young AJ; Simon AM; Fey NP; Lipschutz RD; Finucane SB; Halsne EG; Ingraham KA; Kuiken TA
    JAMA; 2015 Jun; 313(22):2244-52. PubMed ID: 26057285
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prediction of Lower Extremity Multi-Joint Angles during Overground Walking by Using a Single IMU with a Low Frequency Based on an LSTM Recurrent Neural Network.
    Sung J; Han S; Park H; Cho HM; Hwang S; Park JW; Youn I
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009591
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Phase Variable Approach for IMU-Based Locomotion Activity Recognition.
    Bartlett HL; Goldfarb M
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1330-1338. PubMed ID: 28910754
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Gait Phase Recognition Using Deep Convolutional Neural Network with Inertial Measurement Units.
    Su B; Smith C; Gutierrez Farewik E
    Biosensors (Basel); 2020 Aug; 10(9):. PubMed ID: 32867277
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.