BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 36433473)

  • 1. Using Novel Multi-Frequency Analysis Methods to Retrieve Material and Temperature Information in Tactile Sensing Areas.
    Abdelwahed M; Zerioul L; Pitti A; Romain O
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Artificial skin through super-sensing method and electrical impedance data from conductive fabric with aid of deep learning.
    Duan X; Taurand S; Soleimani M
    Sci Rep; 2019 Jun; 9(1):8831. PubMed ID: 31222040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. E-Skin Using Fringing Field Electrical Impedance Tomography with an Ionic Liquid Domain.
    Soleimani M; Friedrich M
    Sensors (Basel); 2022 Jul; 22(13):. PubMed ID: 35808533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Hydrogel-Based Electronic Skin for Touch Detection Using Electrical Impedance Tomography.
    Zhang H; Kalra A; Lowe A; Yu Y; Anand G
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Dual-Responsive Artificial Skin for Tactile and Touchless Interfaces.
    Wang HL; Chen T; Zhang B; Wang G; Yang X; Wu K; Wang Y
    Small; 2023 May; 19(21):e2206830. PubMed ID: 36700923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Static Tactile Sensing for a Robotic Electronic Skin via an Electromechanical Impedance-Based Approach.
    Liu C; Zhuang Y; Nasrollahi A; Lu L; Haider MF; Chang FK
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32429364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large-Area and Low-Cost Force/Tactile Capacitive Sensor for Soft Robotic Applications.
    Pagoli A; Chapelle F; Corrales-Ramon JA; Mezouar Y; Lapusta Y
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684706
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fully printed flexible fingerprint-like three-axis tactile and slip force and temperature sensors for artificial skin.
    Harada S; Kanao K; Yamamoto Y; Arie T; Akita S; Takei K
    ACS Nano; 2014 Dec; 8(12):12851-7. PubMed ID: 25437513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Soft Nanocomposite Based Multi-point, Multi-directional Strain Mapping Sensor Using Anisotropic Electrical Impedance Tomography.
    Lee H; Kwon D; Cho H; Park I; Kim J
    Sci Rep; 2017 Jan; 7():39837. PubMed ID: 28120886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feature-space assessment of electrical impedance tomography coregistered with computed tomography in detecting multiple contrast targets.
    Krishnan K; Liu J; Kohli K
    Med Phys; 2014 Jun; 41(6):061903. PubMed ID: 24877814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variable sensitivity multimaterial robotic e-skin combining electronic and ionic conductivity using electrical impedance tomography.
    Costa Cornellà A; Hardman D; Costi L; Brancart J; Van Assche G; Iida F
    Sci Rep; 2023 Nov; 13(1):20004. PubMed ID: 37968442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biologically inspired multi-layered synthetic skin for tactile feedback in prosthetic limbs.
    Osborn L; Nguyen H; Betthauser J; Kaliki R; Thakor N
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4622-4625. PubMed ID: 28269305
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Tactile Skin System for Touch Sensing with Ultrasound Tomography.
    Soleimani M; Rymarczyk T
    Sensors (Basel); 2023 Jul; 23(13):. PubMed ID: 37447920
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A bio-hybrid tactile sensor incorporating living artificial skin and an impedance sensing array.
    Cheneler D; Buselli E; Camboni D; Anthony C; Grover L; Adams MJ; Oddo CM
    Sensors (Basel); 2014 Dec; 14(12):23781-802. PubMed ID: 25615726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tactile Sensing and Control of Robotic Manipulator Integrating Fiber Bragg Grating Strain-Sensor.
    Massari L; Oddo CM; Sinibaldi E; Detry R; Bowkett J; Carpenter KC
    Front Neurorobot; 2019; 13():8. PubMed ID: 31057387
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Open-Environment Tactile Sensing System: Toward Simple and Efficient Material Identification.
    Wei X; Wang B; Wu Z; Wang ZL
    Adv Mater; 2022 Jul; 34(29):e2203073. PubMed ID: 35578973
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Texture recognition and localization in amorphous robotic skin.
    Hughes D; Correll N
    Bioinspir Biomim; 2015 Sep; 10(5):055002. PubMed ID: 26352901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational intelligence techniques for tactile sensing systems.
    Gastaldo P; Pinna L; Seminara L; Valle M; Zunino R
    Sensors (Basel); 2014 Jun; 14(6):10952-76. PubMed ID: 24949646
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition.
    Rasouli M; Chen Y; Basu A; Kukreja SL; Thakor NV
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):313-325. PubMed ID: 29570059
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of thoracic vascular structures by electrical impedance tomography: a systematic assessment of prominence peak analysis of impedance changes.
    Wodack KH; Buehler S; Nishimoto SA; Graessler MF; Behem CR; Waldmann AD; Mueller B; Böhm SH; Kaniusas E; Thürk F; Maerz A; Trepte CJC; Reuter DA
    Physiol Meas; 2018 Feb; 39(2):024002. PubMed ID: 29350189
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.