These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 36433482)

  • 21. Automatic identification of artifacts in electrodermal activity data.
    Taylor S; Jaques N; Chen W; Fedor S; Sano A; Picard R
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():1934-7. PubMed ID: 26736662
    [TBL] [Abstract][Full Text] [Related]  

  • 22. EDA-gram: designing electrodermal activity fingerprints for visualization and feature extraction.
    Chaspari T; Tsiartas A; Stein Duker LI; Cermak SA; Narayanan SS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():403-406. PubMed ID: 28268358
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Personalized Deep Bi-LSTM RNN Based Model for Pain Intensity Classification Using EDA Signal.
    Pouromran F; Lin Y; Kamarthi S
    Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36365785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Evaluation of Deep Learning Models for Continuous Acute Pain Detection Based on Phasic Electrodermal Activity.
    Pinzon-Arenas JO; Kong Y; Chon KH; Posada-Quintero HF
    IEEE J Biomed Health Inform; 2023 Sep; 27(9):4250-4260. PubMed ID: 37399159
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hyperspectral Image Labeling and Classification Using an Ensemble Semi-Supervised Machine Learning Approach.
    Manian V; Alfaro-Mejía E; Tokars RP
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214523
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Classification of Dichotomous Emotional States Using Electrodermal Activity Signals and Multispectral Analysis.
    Veeranki YR; Ganapathy N; Swaminathan R
    Stud Health Technol Inform; 2022 May; 294():941-942. PubMed ID: 35612249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of situational demands on the direction of electrodermal activation during smoking.
    Morris PH; Gale A
    Addict Behav; 1993; 18(1):35-40. PubMed ID: 8465674
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An efficient automatic workload estimation method based on electrodermal activity using pattern classifier combinations.
    Ghaderyan P; Abbasi A
    Int J Psychophysiol; 2016 Dec; 110():91-101. PubMed ID: 27780715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mild Dehydration Identification Using Machine Learning to Assess Autonomic Responses to Cognitive Stress.
    Posada-Quintero HF; Reljin N; Moutran A; Georgopalis D; Lee EC; Giersch GEW; Casa DJ; Chon KH
    Nutrients; 2019 Dec; 12(1):. PubMed ID: 31877912
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated Pain Assessment using Electrodermal Activity Data and Machine Learning.
    Susam BT; Akcakaya M; Nezamfar H; Diaz D; Xu X; de Sa VR; Craig KD; Huang JS; Goodwin MS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():372-375. PubMed ID: 30440413
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Emotion Assessment Using Feature Fusion and Decision Fusion Classification Based on Physiological Data: Are We There Yet?
    Bota P; Wang C; Fred A; Silva H
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32825624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unsupervised Machine Learning Methods for Artifact Removal in Electrodermal Activity.
    Subramanian S; Tseng B; Barbieri R; Brown EN
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():399-402. PubMed ID: 34891318
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Algorithms and Techniques for the Structural Health Monitoring of Bridges: Systematic Literature Review.
    Sonbul OS; Rashid M
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177433
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Machine Learning-Based Software Defect Prediction for Mobile Applications: A Systematic Literature Review.
    Jorayeva M; Akbulut A; Catal C; Mishra A
    Sensors (Basel); 2022 Mar; 22(7):. PubMed ID: 35408166
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of Self-Perceived Stress and Arousal Based on Electrodermal Activity
    Pakarinen T; Pietila J; Nieminen H
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2191-2195. PubMed ID: 31946336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of Relative Physical Activity Intensity Using Multimodal Sensing of Physiological Data.
    Chowdhury AK; Tjondronegoro D; Chandran V; Zhang J; Trost SG
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31627335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Machine learning (ML) techniques as effective methods for evaluating hair and skin assessments: A systematic review.
    Shakeel CS; Khan SJ
    Proc Inst Mech Eng H; 2024 Feb; 238(2):132-148. PubMed ID: 38156410
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Emotion Recognition Based on Multiple Physiological Signals].
    Chen S; Zhang L; Jiang F; Chen W; Miao J; Chen H
    Zhongguo Yi Liao Qi Xie Za Zhi; 2020 Apr; 44(4):283-287. PubMed ID: 32762198
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrodermal activity patient simulator.
    Geršak G; Drnovšek J
    PLoS One; 2020; 15(2):e0228949. PubMed ID: 32023317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly sensitive index of sympathetic activity based on time-frequency spectral analysis of electrodermal activity.
    Posada-Quintero HF; Florian JP; Orjuela-Cañón ÁD; Chon KH
    Am J Physiol Regul Integr Comp Physiol; 2016 Sep; 311(3):R582-91. PubMed ID: 27440716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.