These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36433505)
1. A Neural Network Based Approach to Inverse Kinematics Problem for General Six-Axis Robots. Lu J; Zou T; Jiang X Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433505 [TBL] [Abstract][Full Text] [Related]
2. A Tandem Robotic Arm Inverse Kinematic Solution Based on an Improved Particle Swarm Algorithm. Zhao G; Jiang D; Liu X; Tong X; Sun Y; Tao B; Kong J; Yun J; Liu Y; Fang Z Front Bioeng Biotechnol; 2022; 10():832829. PubMed ID: 35662837 [TBL] [Abstract][Full Text] [Related]
3. Inverse-free zeroing neural network for time-variant nonlinear optimization with manipulator applications. Chen J; Pan Y; Zhang Y; Li S; Tan N Neural Netw; 2024 Oct; 178():106462. PubMed ID: 38901094 [TBL] [Abstract][Full Text] [Related]
4. Kinematics and workspace analysis of 4SPRR-SPR parallel robots. Luo L; Hou L; Zhang Q; Wei Y; Wu Y PLoS One; 2021; 16(1):e0239150. PubMed ID: 33471792 [TBL] [Abstract][Full Text] [Related]
5. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot. Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713 [TBL] [Abstract][Full Text] [Related]
6. A New Artificial Neural Network Approach in Solving Inverse Kinematics of Robotic Arm (Denso VP6242). Almusawi AR; Dülger LC; Kapucu S Comput Intell Neurosci; 2016; 2016():5720163. PubMed ID: 27610129 [TBL] [Abstract][Full Text] [Related]
7. Optimized intelligent control of a 2-degree of freedom robot for rehabilitation of lower limbs using neural network and genetic algorithm. Aminiazar W; Najafi F; Nekoui MA J Neuroeng Rehabil; 2013 Aug; 10():96. PubMed ID: 23945420 [TBL] [Abstract][Full Text] [Related]
8. Estimation of the Kinematics and Workspace of a Robot Using Artificial Neural Networks. Boanta C; Brișan C Sensors (Basel); 2022 Oct; 22(21):. PubMed ID: 36366055 [TBL] [Abstract][Full Text] [Related]
9. Implementation of six degree-of-freedom high-precision robotic phantom on commercial industrial robotic manipulator. Fujii F; Nonomura T; Shiinoki T Biomed Phys Eng Express; 2021 Aug; 7(5):. PubMed ID: 34330110 [TBL] [Abstract][Full Text] [Related]
10. Trajectory Optimization in Terms of Energy and Performance of an Industrial Robot in the Manufacturing Industry. Garriz C; Domingo R Sensors (Basel); 2022 Oct; 22(19):. PubMed ID: 36236637 [TBL] [Abstract][Full Text] [Related]
11. Speeding up the learning of robot kinematics through function decomposition. Ruiz de Angulo V; Torras C IEEE Trans Neural Netw; 2005 Nov; 16(6):1504-12. PubMed ID: 16342491 [TBL] [Abstract][Full Text] [Related]
12. A Novel Hybrid Algorithm for the Forward Kinematics Problem of 6 DOF Based on Neural Networks. Zhu H; Xu W; Yu B; Ding F; Cheng L; Huang J Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890998 [TBL] [Abstract][Full Text] [Related]
13. Cerebellum-inspired neural network solution of the inverse kinematics problem. Asadi-Eydivand M; Ebadzadeh MM; Solati-Hashjin M; Darlot C; Abu Osman NA Biol Cybern; 2015 Dec; 109(6):561-74. PubMed ID: 26438095 [TBL] [Abstract][Full Text] [Related]
14. Deeply-learnt damped least-squares (DL-DLS) method for inverse kinematics of snake-like robots. Omisore OM; Han S; Ren L; Elazab A; Hui L; Abdelhamid T; Azeez NA; Wang L Neural Netw; 2018 Nov; 107():34-47. PubMed ID: 30241968 [TBL] [Abstract][Full Text] [Related]
15. An Improved Weighted Gradient Projection Method for Inverse Kinematics of Redundant Surgical Manipulators. Zhang X; Fan B; Wang C; Cheng X Sensors (Basel); 2021 Nov; 21(21):. PubMed ID: 34770667 [TBL] [Abstract][Full Text] [Related]
16. Neural network control of multifingered robot hands using visual feedback. Zhao Y; Cheah CC IEEE Trans Neural Netw; 2009 May; 20(5):758-67. PubMed ID: 19369155 [TBL] [Abstract][Full Text] [Related]
17. Adaptive fuzzy neural network control design via a T-S fuzzy model for a robot manipulator including actuator dynamics. Wai RJ; Yang ZW IEEE Trans Syst Man Cybern B Cybern; 2008 Oct; 38(5):1326-46. PubMed ID: 18784015 [TBL] [Abstract][Full Text] [Related]
18. Neural network-based model predictive tracking control of an uncertain robotic manipulator with input constraints. Kang E; Qiao H; Gao J; Yang W ISA Trans; 2021 Mar; 109():89-101. PubMed ID: 33616059 [TBL] [Abstract][Full Text] [Related]
19. Adaptive neuro-fuzzy inference system-based path planning of 5-degrees-of-freedom spatial manipulator for medical applications. Narayan J; Singla E; Soni S; Singla A Proc Inst Mech Eng H; 2018 Jul; 232(7):726-732. PubMed ID: 29893165 [TBL] [Abstract][Full Text] [Related]
20. Composite-Learning-Based Adaptive Neural Control for Dual-Arm Robots With Relative Motion. Jiang Y; Wang Y; Miao Z; Na J; Zhao Z; Yang C IEEE Trans Neural Netw Learn Syst; 2022 Mar; 33(3):1010-1021. PubMed ID: 33361000 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]