These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36433511)

  • 21. Wearable ultrasonic guiding device with white cane for the visually impaired: A preliminary verisimilitude experiment.
    Cheng PH
    Assist Technol; 2016; 28(3):127-36. PubMed ID: 26853050
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evaluation of an Audio-haptic Sensory Substitution Device for Enhancing Spatial Awareness for the Visually Impaired.
    Hoffmann R; Spagnol S; Kristjánsson Á; Unnthorsson R
    Optom Vis Sci; 2018 Sep; 95(9):757-765. PubMed ID: 30153241
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sound-Based Localization Using LSTM Networks for Visually Impaired Navigation.
    Bakouri M; Alyami N; Alassaf A; Waly M; Alqahtani T; AlMohimeed I; Alqahtani A; Samsuzzaman M; Ismail HF; Alharbi Y
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112374
    [TBL] [Abstract][Full Text] [Related]  

  • 24. INSIGHT: RFID and Bluetooth enabled automated space for the blind and visually impaired.
    Ganz A; Gandhi SR; Wilson C; Mullett G
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():331-4. PubMed ID: 21096968
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Safe trajectory estimation at a pedestrian crossing to assist visually impaired people.
    Alghamdi S; van Schyndel R; Khalil I
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():5114-7. PubMed ID: 23367079
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Safe Local Navigation for Visually Impaired Users With a Time-of-Flight and Haptic Feedback Device.
    Katzschmann RK; Araki B; Rus D
    IEEE Trans Neural Syst Rehabil Eng; 2018 Mar; 26(3):583-593. PubMed ID: 29522402
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Advanced Augmented White Cane with obstacle height and distance feedback.
    Pyun R; Kim Y; Wespe P; Gassert R; Schneller S
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650358. PubMed ID: 24187177
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ultrasonic Echolocation Device for Assisting the Visually Impaired.
    Mick B; Reddmann N; Manwar R; Avanaki K
    Curr Med Imaging; 2020; 16(5):601-610. PubMed ID: 32484095
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Obstacle Detection System for Navigation Assistance of Visually Impaired People Based on Deep Learning Techniques.
    Said Y; Atri M; Albahar MA; Ben Atitallah A; Alsariera YA
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37299996
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-obstacle aware smart navigation system for visually impaired people in fog connected IoT-cloud environment.
    Mueen A; Awedh M; Zafar B
    Health Informatics J; 2022; 28(3):14604582221112609. PubMed ID: 35801559
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Multi-Section Sensing and Vibrotactile Perception for Walking Guide of Visually Impaired Person.
    Jeong GY; Yu KH
    Sensors (Basel); 2016 Jul; 16(7):. PubMed ID: 27420060
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Wearable Virtual White Cane Network for navigating people with visual impairment.
    Gao Y; Chandrawanshi R; Nau AC; Tse ZT
    Proc Inst Mech Eng H; 2015 Sep; 229(9):681-8. PubMed ID: 26334037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A Self Assistive Device for Deaf & Blind People Using IOT : Kathu-Kann Thaan Thunai Eyanthiram.
    Vasanth K ; Macharla M; Varatharajan R
    J Med Syst; 2019 Mar; 43(4):88. PubMed ID: 30820679
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Intelligent Head-Mounted Obstacle Avoidance Wearable for the Blind and Visually Impaired.
    Xu P; Song A; Wang K
    Sensors (Basel); 2023 Dec; 23(23):. PubMed ID: 38067971
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A navigation system for the visually impaired using colored navigation lines and RFID tags.
    Seto FT
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():831-4. PubMed ID: 19963980
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Indoor Navigation Systems for Visually Impaired Persons: Mapping the Features of Existing Technologies to User Needs.
    Plikynas D; Žvironas A; Budrionis A; Gudauskis M
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31979246
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Resistance of IoT Sensors against DDoS Attack in Smart Home Environment.
    Huraj L; Šimon M; Horák T
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32947950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Wearable Navigation Device for Visually Impaired People Based on the Real-Time Semantic Visual SLAM System.
    Chen Z; Liu X; Kojima M; Huang Q; Arai T
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672146
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of the navigation system for the visually impaired by using white cane.
    Hirahara Y; Sakurai Y; Shiidu Y; Yanashima K; Magatani K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():4893-6. PubMed ID: 17945865
    [TBL] [Abstract][Full Text] [Related]  

  • 40. VISTA
    Ramadan B; Fink W; Nuncio Zuniga A; Kay K; Powers N; Fuhrman C; Hong S
    J Med Eng Technol; 2022 Jan; 46(1):59-68. PubMed ID: 34711120
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.