These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36433514)

  • 1. LiDAR-Only Crop Navigation for Symmetrical Robot.
    Guyonneau R; Mercier F; Oliveira Freitas G
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433514
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coordinated Navigation of Two Agricultural Robots in a Vineyard: A Simulation Study.
    Lytridis C; Bazinas C; Pachidis T; Chatzis V; Kaburlasos VG
    Sensors (Basel); 2022 Nov; 22(23):. PubMed ID: 36501793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Research and Implementation of Autonomous Navigation for Mobile Robots Based on SLAM Algorithm under ROS.
    Zhao J; Liu S; Li J
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SLAM algorithm applied to robotics assistance for navigation in unknown environments.
    Cheein FA; Lopez N; Soria CM; di Sciascio FA; Pereira FL; Carelli R
    J Neuroeng Rehabil; 2010 Feb; 7():10. PubMed ID: 20163735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Robot navigation in cluttered 3-D environments using preference-based fuzzy behaviors.
    Shi D; Collins EG; Dunlap D
    IEEE Trans Syst Man Cybern B Cybern; 2007 Dec; 37(6):1486-99. PubMed ID: 18179068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous Navigation System of Greenhouse Mobile Robot Based on 3D Lidar and 2D Lidar SLAM.
    Jiang S; Wang S; Yi Z; Zhang M; Lv X
    Front Plant Sci; 2022; 13():815218. PubMed ID: 35360319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. ROS-Based Autonomous Navigation Robot Platform with Stepping Motor.
    Zhao S; Hwang SH
    Sensors (Basel); 2023 Mar; 23(7):. PubMed ID: 37050707
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatically Annotated Dataset of a Ground Mobile Robot in Natural Environments via Gazebo Simulations.
    Sánchez M; Morales J; Martínez JL; Fernández-Lozano JJ; García-Cerezo A
    Sensors (Basel); 2022 Jul; 22(15):. PubMed ID: 35898100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model-Predictive Control for Omnidirectional Mobile Robots in Logistic Environments Based on Object Detection Using CNNs.
    Achirei SD; Mocanu R; Popovici AT; Dosoftei CC
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299719
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inter-row navigation line detection for cotton with broken rows.
    Liang X; Chen B; Wei C; Zhang X
    Plant Methods; 2022 Jul; 18(1):90. PubMed ID: 35780217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Navigation Simulation of a Mecanum Wheel Mobile Robot Based on an Improved A* Algorithm in Unity3D.
    Li Y; Dai S; Shi Y; Zhao L; Ding M
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Navigation System of a Logistics Inspection Robot Based on Multi-Sensor Fusion in a Complex Storage Environment.
    Zhang Y; Zhou Y; Li H; Hao H; Chen W; Zhan W
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and experiments with a SLAM system for low-density canopy environments in greenhouses based on an improved Cartographer framework.
    Tan H; Zhao X; Zhai C; Fu H; Chen L; Yang M
    Front Plant Sci; 2024; 15():1276799. PubMed ID: 38362453
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Leveraging Expert Demonstration Features for Deep Reinforcement Learning in Floor Cleaning Robot Navigation.
    Cimurs R; Merchán-Cruz EA
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Navigation of a Fuzzy-Controlled Wheeled Robot Through the Combination of Expert Knowledge and Data-Driven Multiobjective Evolutionary Learning.
    Juang CF; Chou CY; Lin CT
    IEEE Trans Cybern; 2022 Aug; 52(8):7388-7401. PubMed ID: 33400665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Lightweight Localization Strategy for LiDAR-Guided Autonomous Robots with Artificial Landmarks.
    Wang S; Chen X; Ding G; Li Y; Xu W; Zhao Q; Gong Y; Song Q
    Sensors (Basel); 2021 Jun; 21(13):. PubMed ID: 34208935
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Merge Fuzzy Visual Servoing and GPS-Based Planning to Obtain a Proper Navigation Behavior for a Small Crop-Inspection Robot.
    Bengochea-Guevara JM; Conesa-Muñoz J; Andújar D; Ribeiro A
    Sensors (Basel); 2016 Feb; 16(3):276. PubMed ID: 26927102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A layered goal-oriented fuzzy motion planning strategy for mobile robot navigation.
    Yang X; Moallem M; Patel RV
    IEEE Trans Syst Man Cybern B Cybern; 2005 Dec; 35(6):1214-24. PubMed ID: 16366247
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Walking motion generation, synthesis, and control for biped robot by using PGRL, LPI, and fuzzy logic.
    Li TH; Su YT; Lai SW; Hu JJ
    IEEE Trans Syst Man Cybern B Cybern; 2011 Jun; 41(3):736-48. PubMed ID: 21095871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability Control and Turning Algorithm of an Alpine Skiing Robot.
    Kim SH; Lee B; Hong YD
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.