These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 36433520)
1. A New Intraoral Six-Degrees-of-Freedom Jaw Movement Tracking Method Using Magnetic Fingerprints. Morikawa K; Isogai R; Nonaka J; Yoshida Y; Haga S; Maki K Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433520 [TBL] [Abstract][Full Text] [Related]
2. [Studies evaluating measurement accuracy of CMS-JAW, a jaw motion tracking device with six degrees of freedom using an ultrasonic recording system]. Uchida T; Sakai J; Okamoto Y; Watanabe T; Kitagawa T; Aida M; Saito T; Ito T Nihon Hotetsu Shika Gakkai Zasshi; 2008 Jul; 52(3):350-9. PubMed ID: 18678968 [TBL] [Abstract][Full Text] [Related]
3. A high-resolution line sensor-based photostereometric system for measuring jaw movements in 6 degrees of freedom. Hayashi T; Kurokawa M; Miyakawa M; Aizawa T; Kanaki A; Saitoh A; Ishioka K Front Med Biol Eng; 1994; 6(3):171-86. PubMed ID: 7727316 [TBL] [Abstract][Full Text] [Related]
4. A simple and inexpensive system for monitoring jaw movements in ambulatory humans. Flavel SC; Nordstrom MA; Miles TS J Biomech; 2002 May; 35(5):573-7. PubMed ID: 11955496 [TBL] [Abstract][Full Text] [Related]
5. Development and evaluation of a jaw-tracking system for mice: reconstruction of three-dimensional movement trajectories on an arbitrary point on the mandible. Moriuchi E; Hamanaka R; Koga Y; Fujishita A; Yoshimi T; Yasuda G; Kohara H; Yoshida N Biomed Eng Online; 2019 May; 18(1):59. PubMed ID: 31096969 [TBL] [Abstract][Full Text] [Related]
6. Accelerometry-Enhanced Magnetic Sensor for Intra-Oral Continuous Jaw Motion Tracking. Jucevičius M; Ožiūnas R; Mažeika M; Marozas V; Jegelevičius D Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33670498 [TBL] [Abstract][Full Text] [Related]
7. Development of a three-dimensional jaw-tracking system implanted in the freely moving mouse. Koga Y; Yoshida N; Kobayashi K; Ichiro Okayasu ; Yamada Y Med Eng Phys; 2001 Apr; 23(3):201-6. PubMed ID: 11410385 [TBL] [Abstract][Full Text] [Related]
8. Permanent Magnet Tracking Method Resistant to Background Magnetic Field for Assessing Jaw Movement in Wearable Devices. Jucevičius M; Ožiūnas R; Narvydas G; Jegelevičius D Sensors (Basel); 2022 Jan; 22(3):. PubMed ID: 35161716 [TBL] [Abstract][Full Text] [Related]
9. Accuracy verification of a PSD-equipped camera-based photostereometric system developed for measuring cranial movements in six degrees of freedom. Hayashi T; Nakamura Y; Takeda T; Miyakawa M; Katoh K Front Med Biol Eng; 1996; 7(3):189-205. PubMed ID: 8882905 [TBL] [Abstract][Full Text] [Related]
10. Error analysis of a magnetic jaw-tracking device. Balkhi KM; Tallents RH; Goldin B; Catania JA J Craniomandib Disord; 1991; 5(1):51-6. PubMed ID: 1809770 [TBL] [Abstract][Full Text] [Related]
11. Ambulatory position and orientation tracking fusing magnetic and inertial sensing. Roetenberg D; Slycke PJ; Veltink PH IEEE Trans Biomed Eng; 2007 May; 54(5):883-90. PubMed ID: 17518285 [TBL] [Abstract][Full Text] [Related]
12. Spatiotemporal consistency of human mandibular and head-neck movement trajectories during jaw opening-closing tasks. Zafar H; Nordh E; Eriksson PO Exp Brain Res; 2002 Sep; 146(1):70-6. PubMed ID: 12192580 [TBL] [Abstract][Full Text] [Related]
13. Integrated jaw and neck function in man. Studies of mandibular and head-neck movements during jaw opening-closing tasks. Zafar H Swed Dent J Suppl; 2000; (143):1-41. PubMed ID: 11234611 [TBL] [Abstract][Full Text] [Related]
14. [Six degree-of-freedom acquisition and analysis of jaw opening and closing with motion capture system]. Wang H; Bi ZY; Zhao WD; Tian H; Jiao PF; Wu BL; Zhao WH; Liu Y Nan Fang Yi Ke Da Xue Xue Bao; 2011 Sep; 31(9):1597-9. PubMed ID: 21945776 [TBL] [Abstract][Full Text] [Related]
15. Development of an experimental optoelectronic device to study the amplitude of mandibular movements. Missaka R; Adachi LK; Tamaki R; Shinkai RS; Campos TN; Horikawa O Braz Oral Res; 2008; 22(2):151-7. PubMed ID: 18622485 [TBL] [Abstract][Full Text] [Related]
16. The different effects of intraoral vertical ramus osteotomy (IVRO) and sagittal split ramus osteotomy (SSRO) on mandibular border movement. Komori H; Kawanabe N; Kataoka T; Kato Y; Fujisawa A; Yamashiro T; Kamioka H Cranio; 2018 Jul; 36(4):228-233. PubMed ID: 28436308 [TBL] [Abstract][Full Text] [Related]
17. [Development of a new device for continuous measurement of vertical dimension using Magneto-Impedance (MI) sensors]. Fujii Y; Khono S; Hayashi T; Honkura Y; Kobayashi H Nihon Hotetsu Shika Gakkai Zasshi; 2007 Oct; 51(4):741-50. PubMed ID: 17968153 [TBL] [Abstract][Full Text] [Related]
18. Use of interimplant displacement to measure mandibular distortion during jaw movements in humans. Horiuchi M; Ichikawa T; Noda M; Matsumoto N Arch Oral Biol; 1997 Feb; 42(2):185-8. PubMed ID: 9134131 [TBL] [Abstract][Full Text] [Related]
19. Development of a mandibular tracking device with six degrees of freedom using optoelectronic system. Maeda Y; Okada M; Mori T; Enomoto K; Sogo M; Okuno Y J Osaka Univ Dent Sch; 1992 Dec; 32():45-50. PubMed ID: 1341709 [TBL] [Abstract][Full Text] [Related]
20. Temporal coordination between mandibular and head-neck movements during jaw opening-closing tasks in man. Zafar H; Nordh E; Eriksson PO Arch Oral Biol; 2000 Aug; 45(8):675-82. PubMed ID: 10869479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]