These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36433590)

  • 1. Mirror Clock: A Strategy for Identifying Atomic Clock Frequency Jumps.
    Liu M; Chen Y; Xu Q; Wang Y; Gao Y; Zhang A
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Test and Analysis of Timekeeping Performance of Atomic Clock.
    Li S; Li C; Wu J; Cui H
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560252
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitigation of Lamplight-Induced Frequency Jumps in Space Rubidium Clocks.
    Formichella V; Camparo J; Tavella P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):911-918. PubMed ID: 29856707
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Robust Detection of Fast and Slow Frequency Jumps of Atomic Clocks.
    Galleani L; Tavella P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Feb; 64(2):475-485. PubMed ID: 27834645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of weak frequency jumps for GNSS onboard clocks.
    Huang X; Gong H; Ou G
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 May; 61(5):747-55. PubMed ID: 24802723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autonomous Rubidium Clock Weak Frequency Jump Detector for Onboard Navigation Satellite System.
    Khare A; Arora R; Banik A; Mehta SD
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Feb; 63(2):326-35. PubMed ID: 26685233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sr lattice clock at 1 x 10(-16) fractional uncertainty by remote optical evaluation with a Ca clock.
    Ludlow AD; Zelevinsky T; Campbell GK; Blatt S; Boyd MM; de Miranda MH; Martin MJ; Thomsen JW; Foreman SM; Ye J; Fortier TM; Stalnaker JE; Diddams SA; Le Coq Y; Barber ZW; Poli N; Lemke ND; Beck KM; Oates CW
    Science; 2008 Mar; 319(5871):1805-8. PubMed ID: 18276849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JPL Ultrastable Trapped Ion Atomic Frequency Standards.
    Burt EA; Yi L; Tucker B; Hamell R; Tjoelker RL
    IEEE Trans Ultrason Ferroelectr Freq Control; 2016 Jul; 63(7):1013-21. PubMed ID: 27249827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optical lattice clock with accuracy and stability at the 10(-18) level.
    Bloom BJ; Nicholson TL; Williams JR; Campbell SL; Bishof M; Zhang X; Zhang W; Bromley SL; Ye J
    Nature; 2014 Feb; 506(7486):71-5. PubMed ID: 24463513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allan Deviation of Atomic Clock Frequency Corrections: A New Diagnostic Tool for Characterizing Clock Disturbances.
    Enzer DG; Murphy DW; Burt EA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Jul; 68(7):2590-2601. PubMed ID: 33617452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser with 10
    Shang H; Zhang T; Miao J; Shi T; Pan D; Zhao X; Wei Q; Yang L; Chen J
    Opt Express; 2020 Mar; 28(5):6868-6880. PubMed ID: 32225925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ramsey Spectroscopy with Displaced Frequency Jumps.
    Shuker M; Pollock JW; Boudot R; Yudin VI; Taichenachev AV; Kitching J; Donley EA
    Phys Rev Lett; 2019 Mar; 122(11):113601. PubMed ID: 30951321
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic clock performance enabling geodesy below the centimetre level.
    McGrew WF; Zhang X; Fasano RJ; Schäffer SA; Beloy K; Nicolodi D; Brown RC; Hinkley N; Milani G; Schioppo M; Yoon TH; Ludlow AD
    Nature; 2018 Dec; 564(7734):87-90. PubMed ID: 30487601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics and Performance Evaluation of QZSS Onboard Satellite Clocks.
    Xie W; Huang G; Cui B; Li P; Cao Y; Wang H; Chen Z; Shao B
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31771314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold atom microwave clock based on intracavity cooling in China space station.
    Deng S; Ren W; Xiang J; Zhao J; Li L; Zhang D; Wan J; Meng Y; Jiang X; Li T; Liu L; Lü D
    NPJ Microgravity; 2024 Jun; 10(1):66. PubMed ID: 38844756
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks.
    Akamatsu D; Yasuda M; Inaba H; Hosaka K; Tanabe T; Onae A; Hong FL
    Opt Express; 2014 Apr; 22(7):7898-905. PubMed ID: 24718165
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An atomic clock with 10(-18) instability.
    Hinkley N; Sherman JA; Phillips NB; Schioppo M; Lemke ND; Beloy K; Pizzocaro M; Oates CW; Ludlow AD
    Science; 2013 Sep; 341(6151):1215-8. PubMed ID: 23970562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Demonstration of a trapped-ion atomic clock in space.
    Burt EA; Prestage JD; Tjoelker RL; Enzer DG; Kuang D; Murphy DW; Robison DE; Seubert JM; Wang RT; Ely TA
    Nature; 2021 Jul; 595(7865):43-47. PubMed ID: 34194022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of atomic clock frequency jumps with the Kalman filter.
    Galleani L; Tavella P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2012 Mar; 59(3):504-9. PubMed ID: 22481785
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Frequency ratio measurements at 18-digit accuracy using an optical clock network.
    Boulder Atomic Clock Optical Network (BACON) Collaboration*
    Nature; 2021 Mar; 591(7851):564-569. PubMed ID: 33762766
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.