These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 36433590)

  • 21. Comparison of two independent Sr optical clocks with 1×10(-17) stability at 10(3) s.
    Nicholson TL; Martin MJ; Williams JR; Bloom BJ; Bishof M; Swallows MD; Campbell SL; Ye J
    Phys Rev Lett; 2012 Dec; 109(23):230801. PubMed ID: 23368177
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential clock comparisons with a multiplexed optical lattice clock.
    Zheng X; Dolde J; Lochab V; Merriman BN; Li H; Kolkowitz S
    Nature; 2022 Feb; 602(7897):425-430. PubMed ID: 35173344
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design of a RF Switch Used in Redundant Atomic Clock Configurations.
    Hou Y; Wang S; Tang S; Zhang T
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31137578
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simultaneous bicolor interrogation in thulium optical clock providing very low systematic frequency shifts.
    Golovizin AA; Tregubov DO; Fedorova ES; Mishin DA; Provorchenko DI; Khabarova KY; Sorokin VN; Kolachevsky NN
    Nat Commun; 2021 Aug; 12(1):5171. PubMed ID: 34453046
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Atomic clock with 1×10(-18) room-temperature blackbody Stark uncertainty.
    Beloy K; Hinkley N; Phillips NB; Sherman JA; Schioppo M; Lehman J; Feldman A; Hanssen LM; Oates CW; Ludlow AD
    Phys Rev Lett; 2014 Dec; 113(26):260801. PubMed ID: 25615296
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An optical lattice clock.
    Takamoto M; Hong FL; Higashi R; Katori H
    Nature; 2005 May; 435(7040):321-4. PubMed ID: 15902252
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Joint Timekeeping of Navigation Satellite Constellation with Inter-Satellite Links.
    Sun L; Huang W; Gao S; Li W; Guo X; Yang J
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 31991743
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterizing Periodic Variations of Atomic Frequency Standards via Their Frequency Stability Estimates.
    Cheng W; Nie G; Zhu J
    Sensors (Basel); 2023 Jun; 23(11):. PubMed ID: 37300081
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluation of Lattice Light Shift at Low 10^{-19} Uncertainty for a Shallow Lattice Sr Optical Clock.
    Kim K; Aeppli A; Bothwell T; Ye J
    Phys Rev Lett; 2023 Mar; 130(11):113203. PubMed ID: 37001111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Operation of an optical atomic clock with a Brillouin laser subsystem.
    Loh W; Stuart J; Reens D; Bruzewicz CD; Braje D; Chiaverini J; Juodawlkis PW; Sage JM; McConnell R
    Nature; 2020 Dec; 588(7837):244-249. PubMed ID: 33299197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optical-Clock-Based Time Scale.
    Yao J; Sherman JA; Fortier T; Leopardi H; Parker T; McGrew W; Zhang X; Nicolodi D; Fasano R; Schäffer S; Beloy K; Savory J; Romisch S; Oates C; Diddams S; Ludlow A; Levine J
    Phys Rev Appl; 2019; 12(4):. PubMed ID: 33102625
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place.
    Rosenband T; Hume DB; Schmidt PO; Chou CW; Brusch A; Lorini L; Oskay WH; Drullinger RE; Fortier TM; Stalnaker JE; Diddams SA; Swann WC; Newbury NR; Itano WM; Wineland DJ; Bergquist JC
    Science; 2008 Mar; 319(5871):1808-12. PubMed ID: 18323415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A valid and reliable method to measure jump-specific training and competition load in elite volleyball players.
    Skazalski C; Whiteley R; Hansen C; Bahr R
    Scand J Med Sci Sports; 2018 May; 28(5):1578-1585. PubMed ID: 29315832
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Design and operation of a transportable
    Cheng HN; Zhang Z; Deng S; Ji JW; Ren W; Xiang JF; Zhao JB; Zhao X; Ye MF; Li L; Li T; Qu QZ; Chen W; Liu K; Dai S; Fang F; Li T; Liu L; Lü DS
    Rev Sci Instrum; 2021 May; 92(5):054702. PubMed ID: 34243348
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An optical atomic clock based on a highly charged ion.
    King SA; Spieß LJ; Micke P; Wilzewski A; Leopold T; Benkler E; Lange R; Huntemann N; Surzhykov A; Yerokhin VA; Crespo López-Urrutia JR; Schmidt PO
    Nature; 2022 Nov; 611(7934):43-47. PubMed ID: 36323811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The dynamic Allan Variance IV: characterization of atomic clock anomalies.
    Galleani L; Tavella P
    IEEE Trans Ultrason Ferroelectr Freq Control; 2015 May; 62(5):791-801. PubMed ID: 25965674
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Entanglement on an optical atomic-clock transition.
    Pedrozo-Peñafiel E; Colombo S; Shu C; Adiyatullin AF; Li Z; Mendez E; Braverman B; Kawasaki A; Akamatsu D; Xiao Y; Vuletić V
    Nature; 2020 Dec; 588(7838):414-418. PubMed ID: 33328668
    [TBL] [Abstract][Full Text] [Related]  

  • 38. High accuracy correction of blackbody radiation shift in an optical lattice clock.
    Middelmann T; Falke S; Lisdat C; Sterr U
    Phys Rev Lett; 2012 Dec; 109(26):263004. PubMed ID: 23368558
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An optical clock based on a single trapped 199Hg+ ion.
    Diddams SA; Udem T; Bergquist JC; Curtis EA; Drullinger RE; Hollberg L; Itano WM; Lee WD; Oates CW; Vogel KR; Wineland DJ
    Science; 2001 Aug; 293(5531):825-8. PubMed ID: 11452082
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved Short-Term Clock Prediction Method for Real-Time Positioning.
    Lv Y; Dai Z; Zhao Q; Yang S; Zhou J; Liu J
    Sensors (Basel); 2017 Jun; 17(6):. PubMed ID: 28587307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.