BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

600 related articles for article (PubMed ID: 36433748)

  • 1. Deep learning-based motion quantification from k-space for fast model-based magnetic resonance imaging motion correction.
    Hossbach J; Splitthoff DN; Cauley S; Clifford B; Polak D; Lo WC; Meyer H; Maier A
    Med Phys; 2023 Apr; 50(4):2148-2161. PubMed ID: 36433748
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning-based image reconstruction and motion estimation from undersampled radial k-space for real-time MRI-guided radiotherapy.
    Terpstra ML; Maspero M; d'Agata F; Stemkens B; Intven MPW; Lagendijk JJW; van den Berg CAT; Tijssen RHN
    Phys Med Biol; 2020 Aug; 65(15):155015. PubMed ID: 32408295
    [TBL] [Abstract][Full Text] [Related]  

  • 3. MRI motion artifact reduction using a conditional diffusion probabilistic model (MAR-CDPM).
    Safari M; Yang X; Fatemi A; Archambault L
    Med Phys; 2024 Apr; 51(4):2598-2610. PubMed ID: 38009583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unsupervised motion artifact correction of turbo spin-echo MRI using deep image prior.
    Lee J; Seo H; Lee W; Park H
    Magn Reson Med; 2024 Jul; 92(1):28-42. PubMed ID: 38282279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stacked U-Nets with self-assisted priors towards robust correction of rigid motion artifact in brain MRI.
    Al-Masni MA; Lee S; Yi J; Kim S; Gho SM; Choi YH; Kim DH
    Neuroimage; 2022 Oct; 259():119411. PubMed ID: 35753594
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Network Accelerated Motion Estimation and Reduction (NAMER): Convolutional neural network guided retrospective motion correction using a separable motion model.
    Haskell MW; Cauley SF; Bilgic B; Hossbach J; Splitthoff DN; Pfeuffer J; Setsompop K; Wald LL
    Magn Reson Med; 2019 Oct; 82(4):1452-1461. PubMed ID: 31045278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRI super-resolution reconstruction for MRI-guided adaptive radiotherapy using cascaded deep learning: In the presence of limited training data and unknown translation model.
    Chun J; Zhang H; Gach HM; Olberg S; Mazur T; Green O; Kim T; Kim H; Kim JS; Mutic S; Park JC
    Med Phys; 2019 Sep; 46(9):4148-4164. PubMed ID: 31309585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intra-frame motion deterioration effects and deep-learning-based compensation in MR-guided radiotherapy.
    Sui Z; Palaniappan P; Brenner J; Paganelli C; Kurz C; Landry G; Riboldi M
    Med Phys; 2024 Mar; 51(3):1899-1917. PubMed ID: 37665948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Streamlined magnetic resonance fingerprinting: Fast whole-brain coverage with deep-learning based parameter estimation.
    Khajehim M; Christen T; Tam F; Graham SJ
    Neuroimage; 2021 Sep; 238():118237. PubMed ID: 34091035
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deep Learning k-Space-to-Image Reconstruction Facilitates High Spatial Resolution and Scan Time Reduction in Diffusion-Weighted Imaging Breast MRI.
    Sauer ST; Christner SA; Lois AM; Woznicki P; Curtaz C; Kunz AS; Weiland E; Benkert T; Bley TA; Baeßler B; Grunz JP
    J Magn Reson Imaging; 2023 Nov; ():. PubMed ID: 37974498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MC
    Lee J; Kim B; Park H
    Magn Reson Med; 2021 Aug; 86(2):1077-1092. PubMed ID: 33720462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Projection-domain scatter correction for cone beam computed tomography using a residual convolutional neural network.
    Nomura Y; Xu Q; Shirato H; Shimizu S; Xing L
    Med Phys; 2019 Jul; 46(7):3142-3155. PubMed ID: 31077390
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AI-based motion artifact severity estimation in undersampled MRI allowing for selection of appropriate reconstruction models.
    Beljaards L; Pezzotti N; Rao C; Doneva M; van Osch MJP; Staring M
    Med Phys; 2024 May; 51(5):3555-3565. PubMed ID: 38167996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Motion artifact reduction for magnetic resonance imaging with deep learning and k-space analysis.
    Cui L; Song Y; Wang Y; Wang R; Wu D; Xie H; Li J; Yang G
    PLoS One; 2023; 18(1):e0278668. PubMed ID: 36603007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Memory efficient model based deep learning reconstructions for high spatial resolution 3D non-cartesian acquisitions.
    Miller Z; Pirasteh A; Johnson KM
    Phys Med Biol; 2023 Mar; 68(7):. PubMed ID: 36854193
    [No Abstract]   [Full Text] [Related]  

  • 16. MR-self Noise2Noise: self-supervised deep learning-based image quality improvement of submillimeter resolution 3D MR images.
    Jung W; Lee HS; Seo M; Nam Y; Choi Y; Shin NY; Ahn KJ; Kim BS; Jang J
    Eur Radiol; 2023 Apr; 33(4):2686-2698. PubMed ID: 36378250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retrospective correction of motion-affected MR images using deep learning frameworks.
    Küstner T; Armanious K; Yang J; Yang B; Schick F; Gatidis S
    Magn Reson Med; 2019 Oct; 82(4):1527-1540. PubMed ID: 31081955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimate and compensate head motion in non-contrast head CT scans using partial angle reconstruction and deep learning.
    Chen Z; Li Q; Wu D
    Med Phys; 2024 May; 51(5):3309-3321. PubMed ID: 38569143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep-JASC: joint attenuation and scatter correction in whole-body
    Shiri I; Arabi H; Geramifar P; Hajianfar G; Ghafarian P; Rahmim A; Ay MR; Zaidi H
    Eur J Nucl Med Mol Imaging; 2020 Oct; 47(11):2533-2548. PubMed ID: 32415552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deformable motion compensation in interventional cone-beam CT with a context-aware learned autofocus metric.
    Huang H; Liu Y; Siewerdsen JH; Lu A; Hu Y; Zbijewski W; Unberath M; Weiss CR; Sisniega A
    Med Phys; 2024 Jun; 51(6):4158-4180. PubMed ID: 38733602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.