BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

558 related articles for article (PubMed ID: 36433748)

  • 21. Deep supervised dictionary learning by algorithm unrolling-Application to fast 2D dynamic MR image reconstruction.
    Kofler A; Pali MC; Schaeffter T; Kolbitsch C
    Med Phys; 2023 May; 50(5):2939-2960. PubMed ID: 36565150
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Retrospective motion artifact correction of structural MRI images using deep learning improves the quality of cortical surface reconstructions.
    Duffy BA; Zhao L; Sepehrband F; Min J; Wang DJ; Shi Y; Toga AW; Kim H;
    Neuroimage; 2021 Apr; 230():117756. PubMed ID: 33460797
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conditional generative adversarial network for 3D rigid-body motion correction in MRI.
    Johnson PM; Drangova M
    Magn Reson Med; 2019 Sep; 82(3):901-910. PubMed ID: 31006909
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospective motion correction in 2D multishot MRI using EPI navigators and multislice-to-volume image registration.
    Hoinkiss DC; Porter DA
    Magn Reson Med; 2017 Dec; 78(6):2127-2135. PubMed ID: 28983957
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A knowledge interaction learning for multi-echo MRI motion artifact correction towards better enhancement of SWI.
    Al-Masni MA; Lee S; Al-Shamiri AK; Gho SM; Choi YH; Kim DH
    Comput Biol Med; 2023 Feb; 153():106553. PubMed ID: 36641933
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Correction of out-of-FOV motion artifacts using convolutional neural network.
    Wang C; Liang Y; Wu Y; Zhao S; Du YP
    Magn Reson Imaging; 2020 Sep; 71():93-102. PubMed ID: 32464243
    [TBL] [Abstract][Full Text] [Related]  

  • 27. K-space and image-space combination for motion-induced phase-error correction in self-navigated multicoil multishot DWI.
    Van AT; Karampinos DC; Georgiadis JG; Sutton BP
    IEEE Trans Med Imaging; 2009 Nov; 28(11):1770-80. PubMed ID: 19884065
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerated submillimeter wave-encoded magnetic resonance imaging via deep untrained neural network.
    Liu C; Cui ZX; Jia S; Cheng J; Cao C; Guo Y; Zhu Y; Liang D; Wang H
    Med Phys; 2023 Dec; 50(12):7684-7699. PubMed ID: 37073772
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reference-free learning-based similarity metric for motion compensation in cone-beam CT.
    Huang H; Siewerdsen JH; Zbijewski W; Weiss CR; Unberath M; Ehtiati T; Sisniega A
    Phys Med Biol; 2022 Jun; 67(12):. PubMed ID: 35636391
    [No Abstract]   [Full Text] [Related]  

  • 30. Reconstruction of multicontrast MR images through deep learning.
    Do WJ; Seo S; Han Y; Ye JC; Choi SH; Park SH
    Med Phys; 2020 Mar; 47(3):983-997. PubMed ID: 31889314
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of motion artefact reduction depending on the artefacts' directions in head MRI using conditional generative adversarial networks.
    Usui K; Muro I; Shibukawa S; Goto M; Ogawa K; Sakano Y; Kyogoku S; Daida H
    Sci Rep; 2023 May; 13(1):8526. PubMed ID: 37237139
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Deep learning for x-ray scatter correction in dedicated breast CT.
    Pautasso JJ; Caballo M; Mikerov M; Boone JM; Michielsen K; Sechopoulos I
    Med Phys; 2023 Apr; 50(4):2022-2036. PubMed ID: 36565012
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatiotemporal structure-aware dictionary learning-based 4D CBCT reconstruction.
    Zhi S; Kachelrieß M; Mou X
    Med Phys; 2021 Oct; 48(10):6421-6436. PubMed ID: 34514608
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning-based motion artifact removal networks for quantitative
    Xu X; Kothapalli SVVN; Liu J; Kahali S; Gan W; Yablonskiy DA; Kamilov US
    Magn Reson Med; 2022 Jul; 88(1):106-119. PubMed ID: 35257400
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Real-time MRI motion estimation through an unsupervised k-space-driven deformable registration network (KS-RegNet).
    Shao HC; Li T; Dohopolski MJ; Wang J; Cai J; Tan J; Wang K; Zhang Y
    Phys Med Biol; 2022 Jun; 67(13):. PubMed ID: 35667374
    [No Abstract]   [Full Text] [Related]  

  • 36. TArgeted Motion Estimation and Reduction (TAMER): Data Consistency Based Motion Mitigation for MRI Using a Reduced Model Joint Optimization.
    Haskell MW; Cauley SF; Wald LL
    IEEE Trans Med Imaging; 2018 May; 37(5):1253-1265. PubMed ID: 29727288
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High fidelity deep learning-based MRI reconstruction with instance-wise discriminative feature matching loss.
    Wang K; Tamir JI; De Goyeneche A; Wollner U; Brada R; Yu SX; Lustig M
    Magn Reson Med; 2022 Jul; 88(1):476-491. PubMed ID: 35373388
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Comparison of iterative parametric and indirect deep learning-based reconstruction methods in highly undersampled DCE-MR Imaging of the breast.
    Rastogi A; Yalavarthy PK
    Med Phys; 2020 Oct; 47(10):4838-4861. PubMed ID: 32780871
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retrospective respiratory motion correction in cardiac cine MRI reconstruction using adversarial autoencoder and unsupervised learning.
    Ghodrati V; Bydder M; Ali F; Gao C; Prosper A; Nguyen KL; Hu P
    NMR Biomed; 2021 Feb; 34(2):e4433. PubMed ID: 33258197
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accelerated single-shot T2-weighted fat-suppressed (FS) MRI of the liver with deep learning-based image reconstruction: qualitative and quantitative comparison of image quality with conventional T2-weighted FS sequence.
    Shanbhogue K; Tong A; Smereka P; Nickel D; Arberet S; Anthopolos R; Chandarana H
    Eur Radiol; 2021 Nov; 31(11):8447-8457. PubMed ID: 33961086
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.