BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 36433785)

  • 1. Cancer subtyping with heterogeneous multi-omics data via hierarchical multi-kernel learning.
    Wei Y; Li L; Zhao X; Yang H; Sa J; Cao H; Cui Y
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36433785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. wMKL: multi-omics data integration enables novel cancer subtype identification via weight-boosted multi-kernel learning.
    Cao H; Jia C; Li Z; Yang H; Fang R; Zhang Y; Cui Y
    Br J Cancer; 2024 Apr; 130(6):1001-1012. PubMed ID: 38278975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoencoder-assisted latent representation learning for survival prediction and multi-view clustering on multi-omics cancer subtyping.
    Zhu S; Wang W; Fang W; Cui M
    Math Biosci Eng; 2023 Nov; 20(12):21098-21119. PubMed ID: 38124589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subtype-DCC: decoupled contrastive clustering method for cancer subtype identification based on multi-omics data.
    Zhao J; Zhao B; Song X; Lyu C; Chen W; Xiong Y; Wei DQ
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36702755
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep learning approach based on multi-omics data integration to construct a risk stratification prediction model for skin cutaneous melanoma.
    Li W; Huang Q; Peng Y; Pan S; Hu M; Wang P; He Y
    J Cancer Res Clin Oncol; 2023 Nov; 149(17):15923-15938. PubMed ID: 37673824
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MCluster-VAEs: An end-to-end variational deep learning-based clustering method for subtype discovery using multi-omics data.
    Rong Z; Liu Z; Song J; Cao L; Yu Y; Qiu M; Hou Y
    Comput Biol Med; 2022 Nov; 150():106085. PubMed ID: 36162197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of cancer subtypes associated with clinical outcomes by multi-omics integrative clustering.
    Crippa V; Malighetti F; Villa M; Graudenzi A; Piazza R; Mologni L; Ramazzotti D
    Comput Biol Med; 2023 Aug; 162():107064. PubMed ID: 37267828
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interactive gene identification for cancer subtyping based on multi-omics clustering.
    Ye X; Shi T; Cui Y; Sakurai T
    Methods; 2023 Mar; 211():61-67. PubMed ID: 36804215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-view spectral clustering with latent representation learning for applications on multi-omics cancer subtyping.
    Ge S; Liu J; Cheng Y; Meng X; Wang X
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36445207
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deeply integrating latent consistent representations in high-noise multi-omics data for cancer subtyping.
    Cai Y; Wang S
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38426322
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-omics integration with weighted affinity and self-diffusion applied for cancer subtypes identification.
    Duan X; Ding X; Zhao Z
    J Transl Med; 2024 Jan; 22(1):79. PubMed ID: 38243340
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heterogeneous multiple kernel learning for breast cancer outcome evaluation.
    Yu X; Gong X; Jiang H
    BMC Bioinformatics; 2020 Apr; 21(1):155. PubMed ID: 32326887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-omics clustering for cancer subtyping based on latent subspace learning.
    Ye X; Shang Y; Shi T; Zhang W; Sakurai T
    Comput Biol Med; 2023 Sep; 164():107223. PubMed ID: 37490833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DeepKEGG: a multi-omics data integration framework with biological insights for cancer recurrence prediction and biomarker discovery.
    Lan W; Liao H; Chen Q; Zhu L; Pan Y; Chen YP
    Brief Bioinform; 2024 Mar; 25(3):. PubMed ID: 38678587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similarity Fusion via Exploiting High Order Proximity for Cancer Subtyping.
    Chen J; Rong W; Tao G; Cai H
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):658-667. PubMed ID: 34971537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capturing the latent space of an Autoencoder for multi-omics integration and cancer subtyping.
    Madhumita ; Paul S
    Comput Biol Med; 2022 Sep; 148():105832. PubMed ID: 35834966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Survey and comparative assessments of computational multi-omics integrative methods with multiple regulatory networks identifying distinct tumor compositions across pan-cancer data sets.
    Wei Z; Zhang Y; Weng W; Chen J; Cai H
    Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32533167
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Classifying breast cancer subtypes on multi-omics data via sparse canonical correlation analysis and deep learning.
    Huang Y; Zeng P; Zhong C
    BMC Bioinformatics; 2024 Mar; 25(1):132. PubMed ID: 38539064
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A semi-supervised approach for the integration of multi-omics data based on transformer multi-head self-attention mechanism and graph convolutional networks.
    Wang J; Liao N; Du X; Chen Q; Wei B
    BMC Genomics; 2024 Jan; 25(1):86. PubMed ID: 38254021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multi-Omics Data Fusion for Cancer Molecular Subtyping Using Sparse Canonical Correlation Analysis.
    Qi L; Wang W; Wu T; Zhu L; He L; Wang X
    Front Genet; 2021; 12():607817. PubMed ID: 34367231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.