These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 36433825)

  • 1. Strain Regulating and Kinetics Accelerating of Micro-Sized Silicon Anodes via Dual-Size Hollow Graphitic Carbons Conductive Additives.
    Shi Q; Cheng Y; Wang J; Zhou J; Ta HQ; Lian X; Kurtyka K; Trzebicka B; Gemming T; Rümmeli MH
    Small; 2023 Jan; 19(4):e2205284. PubMed ID: 36433825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hollow-structure engineering of a silicon-carbon anode for ultra-stable lithium-ion batteries.
    Liu H; Chen Y; Jiang B; Zhao Y; Guo X; Ma T
    Dalton Trans; 2020 May; 49(17):5669-5676. PubMed ID: 32292976
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hollow Porous N and Co Dual-Doped Silicon@Carbon Nanocube Derived by ZnCo-Bimetallic Metal-Organic Framework toward Advanced Lithium-Ion Battery Anodes.
    Kim H; Baek J; Son DK; Ruby Raj M; Lee G
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45458-45475. PubMed ID: 36191137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-ICE and High-Capacity Retention Silicon-Based Anode for Lithium-Ion Battery.
    Tzeng Y; Jhan CY; Wu YC; Chen GY; Chiu KM; Guu SY
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564096
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hollow Graphene as an Expansion-Inhibiting Electrical Interconnector for Silicon Electrodes in Lithium-Ion Batteries.
    Park HI; Park YK; Kim SK; Jang HD; Kim H
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35759-35766. PubMed ID: 34289303
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synergetic Effect of Hybrid Conductive Additives for High-Capacity and Excellent Cyclability in Si Anodes.
    Yoo BI; Kim HM; Choi MJ; Yoo JK
    Nanomaterials (Basel); 2022 Sep; 12(19):. PubMed ID: 36234483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes.
    Wu M; Sabisch JE; Song X; Minor AM; Battaglia VS; Liu G
    Nano Lett; 2013; 13(11):5397-402. PubMed ID: 24079331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes.
    Liu H; Li W; Shen D; Zhao D; Wang G
    J Am Chem Soc; 2015 Oct; 137(40):13161-6. PubMed ID: 26414170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conductive rigid skeleton supported silicon as high-performance Li-ion battery anodes.
    Chen X; Li X; Ding F; Xu W; Xiao J; Cao Y; Meduri P; Liu J; Graff GL; Zhang JG
    Nano Lett; 2012 Aug; 12(8):4124-30. PubMed ID: 22800407
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lithium ion battery peformance of silicon nanowires with carbon skin.
    Bogart TD; Oka D; Lu X; Gu M; Wang C; Korgel BA
    ACS Nano; 2014 Jan; 8(1):915-22. PubMed ID: 24313423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An interconnected and scalable hollow Si-C nanospheres/graphite composite for high-performance lithium-ion batteries.
    Gao J; Zuo S; Liu H; Jiang Q; Wang C; Yin H; Wang Z; Wang J
    J Colloid Interface Sci; 2022 Oct; 624():555-563. PubMed ID: 35688095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Commercial Conducting Polymer as Both Binder and Conductive Additive for Silicon Nanoparticle-Based Lithium-Ion Battery Negative Electrodes.
    Higgins TM; Park SH; King PJ; Zhang CJ; McEvoy N; Berner NC; Daly D; Shmeliov A; Khan U; Duesberg G; Nicolosi V; Coleman JN
    ACS Nano; 2016 Mar; 10(3):3702-13. PubMed ID: 26937766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nano/Microstructured Silicon-Carbon Hybrid Composite Particles Fabricated with Corn Starch Biowaste as Anode Materials for Li-Ion Batteries.
    Kwon HJ; Hwang JY; Shin HJ; Jeong MG; Chung KY; Sun YK; Jung HG
    Nano Lett; 2020 Jan; 20(1):625-635. PubMed ID: 31825628
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes.
    Zhang C; Ma Q; Cai M; Zhao Z; Xie H; Ning Z; Wang D; Yin H
    Waste Manag; 2021 Nov; 135():182-189. PubMed ID: 34509770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-controllable synthesis of Zn
    Chen Y; Ji Z; Shen X; Chen H; Qi Y; Yuan A; Qiu J; Li B
    J Colloid Interface Sci; 2021 May; 589():13-24. PubMed ID: 33450456
    [TBL] [Abstract][Full Text] [Related]  

  • 16.
    Liu L; Zuo X; Cheng Y; Xia Y
    ACS Appl Mater Interfaces; 2022 Jun; 14(25):28748-28759. PubMed ID: 35714065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encapsulating silicon particles by graphitic carbon enables High-performance Lithium-ion batteries.
    Zhao J; Rui B; Wei W; Nie P; Chang L; Xue X; Wang L; Jiang J
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1562-1570. PubMed ID: 34583051
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual Carbon Design Strategy for Anodes of Sodium-Ion Battery: Mesoporous CoS
    Sui R; Zan G; Wen M; Li W; Liu Z; Wu Q; Fu Y
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28004-28013. PubMed ID: 35687794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 1000 Wh L
    Chen F; Han J; Kong D; Yuan Y; Xiao J; Wu S; Tang DM; Deng Y; Lv W; Lu J; Kang F; Yang QH
    Natl Sci Rev; 2021 Sep; 8(9):nwab012. PubMed ID: 34691733
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrating Dually Encapsulated Si Architecture and Dense Structural Engineering for Ultrahigh Volumetric and Areal Capacity of Lithium Storage.
    Liu Z; Lu D; Wang W; Yue L; Zhu J; Zhao L; Zheng H; Wang J; Li Y
    ACS Nano; 2022 Mar; 16(3):4642-4653. PubMed ID: 35254052
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.