These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 36433864)

  • 1. SMART Silly Putty: Stretchable, Malleable, Adherable, Reusable, and Tear-Resistible Hydrogels.
    Chen M; Murphy BB; Wang Y; Vitale F; Yang S
    Small; 2023 Feb; 19(6):e2205854. PubMed ID: 36433864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multifunctional Self-Healing Dual Network Hydrogels Constructed via Host-Guest Interaction and Dynamic Covalent Bond as Wearable Strain Sensors for Monitoring Human and Organ Motions.
    Liu X; Ren Z; Liu F; Zhao L; Ling Q; Gu H
    ACS Appl Mater Interfaces; 2021 Mar; 13(12):14612-14622. PubMed ID: 33723988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-Healing, Stretchable, Biocompatible, and Conductive Alginate Hydrogels through Dynamic Covalent Bonds for Implantable Electronics.
    Choi Y; Park K; Choi H; Son D; Shin M
    Polymers (Basel); 2021 Apr; 13(7):. PubMed ID: 33918277
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic "Soft and Hard" Hybrid Networks.
    Liu YJ; Cao WT; Ma MG; Wan P
    ACS Appl Mater Interfaces; 2017 Aug; 9(30):25559-25570. PubMed ID: 28696658
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biofriendly, Stretchable, and Reusable Hydrogel Electronics as Wearable Force Sensors.
    Liu H; Li M; Ouyang C; Lu TJ; Li F; Xu F
    Small; 2018 Sep; 14(36):e1801711. PubMed ID: 30062710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of ultra-stretchable, highly adhesive and self-healable hydrogels
    Mo J; Dai Y; Zhang C; Zhou Y; Li W; Song Y; Wu C; Wang Z
    Mater Horiz; 2021 Nov; 8(12):3409-3416. PubMed ID: 34697619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of stretchable and self-healable dual ionically cross-linked hydrogel based on chitosan/polyacrylic acid with anti-freezing property for multi-model flexible sensing and detection.
    Liang Y; Shen Y; Sun X; Liang H
    Int J Biol Macromol; 2021 Dec; 193(Pt A):629-637. PubMed ID: 34717973
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrastretchable and Self-Healing Conductors with Double Dynamic Network for Omni-Healable Capacitive Strain Sensors.
    Jiang PP; Qin H; Dai J; Yu SH; Cong HP
    Nano Lett; 2022 Feb; 22(3):1433-1442. PubMed ID: 34747171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretchable Multiresponsive Hydrogel with Actuatable, Shape Memory, and Self-Healing Properties.
    Zhang F; Xiong L; Ai Y; Liang Z; Liang Q
    Adv Sci (Weinh); 2018 Aug; 5(8):1800450. PubMed ID: 30128253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent-Exchange-Assisted Wet Annealing: A New Strategy for Superstrong, Tough, Stretchable, and Anti-Fatigue Hydrogels.
    Wu Y; Zhang Y; Wu H; Wen J; Zhang S; Xing W; Zhang H; Xue H; Gao J; Mai Y
    Adv Mater; 2023 Apr; 35(15):e2210624. PubMed ID: 36648109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-healing, stretchable, and highly adhesive hydrogels for epidermal patch electrodes.
    Zhou X; Rajeev A; Subramanian A; Li Y; Rossetti N; Natale G; Lodygensky GA; Cicoira F
    Acta Biomater; 2022 Feb; 139():296-306. PubMed ID: 34365040
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion.
    Zheng C; Lu K; Lu Y; Zhu S; Yue Y; Xu X; Mei C; Xiao H; Wu Q; Han J
    Carbohydr Polym; 2020 Dec; 250():116905. PubMed ID: 33049881
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Bonds between Boronic Acid and Alginate: Hydrogels with Stretchable, Self-Healing, Stimuli-Responsive, Remoldable, and Adhesive Properties.
    Hong SH; Kim S; Park JP; Shin M; Kim K; Ryu JH; Lee H
    Biomacromolecules; 2018 Jun; 19(6):2053-2061. PubMed ID: 29601721
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stretchable, compressible, and conductive hydrogel for sensitive wearable soft sensors.
    Peng X; Wang W; Yang W; Chen J; Peng Q; Wang T; Yang D; Wang J; Zhang H; Zeng H
    J Colloid Interface Sci; 2022 Jul; 618():111-120. PubMed ID: 35338921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-Stretchability, Ultralow-Hysteresis ConductingPolymer Hydrogel Strain Sensors for Soft Machines.
    Shen Z; Zhang Z; Zhang N; Li J; Zhou P; Hu F; Rong Y; Lu B; Gu G
    Adv Mater; 2022 Aug; 34(32):e2203650. PubMed ID: 35726439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the Race for More Stretchable and Tough Hydrogels.
    Grijalvo S; Eritja R; Díaz Díaz D
    Gels; 2019 Apr; 5(2):. PubMed ID: 31035400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid self-healing and self-adhesive chitosan-based hydrogels by host-guest interaction and dynamic covalent bond as flexible sensor.
    Ren Z; Ke T; Ling Q; Zhao L; Gu H
    Carbohydr Polym; 2021 Dec; 273():118533. PubMed ID: 34560946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Healing Hydrogels: Preparation, Mechanism and Advancement in Biomedical Applications.
    Devi V K A; Shyam R; Palaniappan A; Jaiswal AK; Oh TH; Nathanael AJ
    Polymers (Basel); 2021 Oct; 13(21):. PubMed ID: 34771338
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single network double cross-linker (SNDCL) hydrogels with excellent stretchability, self-recovery, adhesion strength, and conductivity for human motion monitoring.
    Li Z; Meng X; Xu W; Zhang S; Ouyang J; Zhang Z; Liu Y; Niu Y; Ma S; Xue Z; Song A; Zhang S; Ren C
    Soft Matter; 2020 Aug; 16(31):7323-7331. PubMed ID: 32677629
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Entanglement-Driven Adhesion, Self-Healing, and High Stretchability of Double-Network PEG-Based Hydrogels.
    Chen K; Feng Y; Zhang Y; Yu L; Hao X; Shao F; Dou Z; An C; Zhuang Z; Luo Y; Wang Y; Wu J; Ji P; Chen T; Wang H
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):36458-36468. PubMed ID: 31509371
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.