These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 36433986)

  • 1. AlphaPeptDeep: a modular deep learning framework to predict peptide properties for proteomics.
    Zeng WF; Zhou XX; Willems S; Ammar C; Wahle M; Bludau I; Voytik E; Strauss MT; Mann M
    Nat Commun; 2022 Nov; 13(1):7238. PubMed ID: 36433986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Deep Convolutional Neural Network for Prediction of Peptide Collision Cross Sections in Ion Mobility Spectrometry.
    Samukhina YV; Matyushin DD; Grinevich OI; Buryak AK
    Biomolecules; 2021 Dec; 11(12):. PubMed ID: 34944547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Research progress and application of retention time prediction method based on deep learning].
    DU Z; Shao W; Qin W
    Se Pu; 2021 Mar; 39(3):211-218. PubMed ID: 34227303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionmob: a Python package for prediction of peptide collisional cross-section values.
    Teschner D; Gomez-Zepeda D; Declercq A; Łącki MK; Avci S; Bob K; Distler U; Michna T; Martens L; Tenzer S; Hildebrandt A
    Bioinformatics; 2023 Sep; 39(9):. PubMed ID: 37540201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning neural network tools for proteomics.
    Meyer JG
    Cell Rep Methods; 2021 Jun; 1(2):100003. PubMed ID: 35475237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DbyDeep: Exploration of MS-Detectable Peptides via Deep Learning.
    Son J; Na S; Paek E
    Anal Chem; 2023 Aug; 95(30):11193-11200. PubMed ID: 37459568
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Systematic Assessment of Deep Learning-Based Predictors of Fragmentation Intensity Profiles.
    Hamaneh MB; Ogurtsov AY; Obolensky OI; Yu YK
    J Proteome Res; 2024 Jun; 23(6):1983-1999. PubMed ID: 38728051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A transformer architecture for retention time prediction in liquid chromatography mass spectrometry-based proteomics.
    Pham TV; Nguyen VV; Vu D; Henneman AA; Richardson RA; Piersma SR; Jimenez CR
    Proteomics; 2023 Apr; 23(7-8):e2200041. PubMed ID: 36906835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep learning the collisional cross sections of the peptide universe from a million experimental values.
    Meier F; Köhler ND; Brunner AD; Wanka JH; Voytik E; Strauss MT; Theis FJ; Mann M
    Nat Commun; 2021 Feb; 12(1):1185. PubMed ID: 33608539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improved Peptide Retention Time Prediction in Liquid Chromatography through Deep Learning.
    Ma C; Ren Y; Yang J; Ren Z; Yang H; Liu S
    Anal Chem; 2018 Sep; 90(18):10881-10888. PubMed ID: 30114359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of LC-MS/MS Properties of Peptides from Sequence by Deep Learning.
    Guan S; Moran MF; Ma B
    Mol Cell Proteomics; 2019 Oct; 18(10):2099-2107. PubMed ID: 31249099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of peptide mass spectral libraries with machine learning.
    Cox J
    Nat Biotechnol; 2023 Jan; 41(1):33-43. PubMed ID: 36008611
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MS2CNN: predicting MS/MS spectrum based on protein sequence using deep convolutional neural networks.
    Lin YM; Chen CT; Chang JM
    BMC Genomics; 2019 Dec; 20(Suppl 9):906. PubMed ID: 31874640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An Interpretable Deep Learning Approach for Biomarker Detection in LC-MS Proteomics Data.
    Iravani S; Conrad TOF
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):151-161. PubMed ID: 35007196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the feasibility of deep learning applications using raw mass spectrometry data.
    Cadow J; Manica M; Mathis R; Guo T; Aebersold R; Rodríguez Martínez M
    Bioinformatics; 2021 Jul; 37(Suppl_1):i245-i253. PubMed ID: 34252933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep learning approaches for data-independent acquisition proteomics.
    Yang Y; Lin L; Qiao L
    Expert Rev Proteomics; 2021 Dec; 18(12):1031-1043. PubMed ID: 34918987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DeepMSPeptide: peptide detectability prediction using deep learning.
    Serrano G; Guruceaga E; Segura V
    Bioinformatics; 2020 Feb; 36(4):1279-1280. PubMed ID: 31529040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. UniSpec: Deep Learning for Predicting the Full Range of Peptide Fragment Ion Series to Enhance the Proteomics Data Analysis Workflow.
    Lapin J; Yan X; Dong Q
    Anal Chem; 2024 Feb; ():. PubMed ID: 38329031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. UniDL4BioPep: a universal deep learning architecture for binary classification in peptide bioactivity.
    Du Z; Ding X; Xu Y; Li Y
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37020337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Prosit-TMT: Deep Learning Boosts Identification of TMT-Labeled Peptides.
    Gabriel W; The M; Zolg DP; Bayer FP; Shouman O; Lautenbacher L; Schnatbaum K; Zerweck J; Knaute T; Delanghe B; Huhmer A; Wenschuh H; Reimer U; Médard G; Kuster B; Wilhelm M
    Anal Chem; 2022 May; 94(20):7181-7190. PubMed ID: 35549156
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.