BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 36433995)

  • 1. Gating and ion selectivity of Channelrhodopsins are critical for photo-activated orientation of Chlamydomonas as shown by in vivo point mutation.
    Baidukova O; Oppermann J; Kelterborn S; Fernandez Lahore RG; Schumacher D; Evers H; Kamrani YY; Hegemann P
    Nat Commun; 2022 Nov; 13(1):7253. PubMed ID: 36433995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channelrhodopsin-1 Phosphorylation Changes with Phototactic Behavior and Responds to Physiological Stimuli in
    Böhm M; Boness D; Fantisch E; Erhard H; Frauenholz J; Kowalzyk Z; Marcinkowski N; Kateriya S; Hegemann P; Kreimer G
    Plant Cell; 2019 Apr; 31(4):886-910. PubMed ID: 30862615
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channelrhodopsin-Dependent Photo-Behavioral Responses in the Unicellular Green Alga Chlamydomonas reinhardtii.
    Wakabayashi KI; Isu A; Ueki N
    Adv Exp Med Biol; 2021; 1293():21-33. PubMed ID: 33398805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multifactorial in vivo regulation of the photoreceptor channelrhodopsin-1 abundance.
    Wolfram M; Greif A; Sizova I; Baidukova O; Hegemann P; Kreimer G
    Plant Cell Environ; 2023 Sep; 46(9):2778-2793. PubMed ID: 37381151
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unifying photocycle model for light adaptation and temporal evolution of cation conductance in channelrhodopsin-2.
    Kuhne J; Vierock J; Tennigkeit SA; Dreier MA; Wietek J; Petersen D; Gavriljuk K; El-Mashtoly SF; Hegemann P; Gerwert K
    Proc Natl Acad Sci U S A; 2019 May; 116(19):9380-9389. PubMed ID: 31004059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Channelrhodopsin-1 initiates phototaxis and photophobic responses in chlamydomonas by immediate light-induced depolarization.
    Berthold P; Tsunoda SP; Ernst OP; Mages W; Gradmann D; Hegemann P
    Plant Cell; 2008 Jun; 20(6):1665-77. PubMed ID: 18552201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a highly efficient blue-shifted channelrhodopsin from the marine alga Platymonas subcordiformis.
    Govorunova EG; Sineshchekov OA; Li H; Janz R; Spudich JL
    J Biol Chem; 2013 Oct; 288(41):29911-22. PubMed ID: 23995841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Observation of Photobehavior in Chlamydomonas reinhardtii.
    Ueki N; Isu A; Kyuji A; Asahina Y; So S; Takahashi R; Hisabori T; Wakabayashi KI
    J Vis Exp; 2022 May; (183):. PubMed ID: 35604154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.
    Inaguma A; Tsukamoto H; Kato HE; Kimura T; Ishizuka T; Oishi S; Yawo H; Nureki O; Furutani Y
    J Biol Chem; 2015 May; 290(18):11623-34. PubMed ID: 25796616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas.
    Wang H; Sugiyama Y; Hikima T; Sugano E; Tomita H; Takahashi T; Ishizuka T; Yawo H
    J Biol Chem; 2009 Feb; 284(9):5685-96. PubMed ID: 19103605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A blue-shifted anion channelrhodopsin from the Colpodellida alga Vitrella brassicaformis.
    Kojima K; Kawanishi S; Nishimura Y; Hasegawa M; Nakao S; Nagata Y; Yoshizawa S; Sudo Y
    Sci Rep; 2023 Apr; 13(1):6974. PubMed ID: 37117398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductance Mechanisms of Rapidly Desensitizing Cation Channelrhodopsins from Cryptophyte Algae.
    Sineshchekov OA; Govorunova EG; Li H; Wang Y; Melkonian M; Wong GK; Brown LS; Spudich JL
    mBio; 2020 Apr; 11(2):. PubMed ID: 32317325
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Channelrhodopsin-mediated optogenetics highlights a central role of depolarization-dependent plant proton pumps.
    Reyer A; Häßler M; Scherzer S; Huang S; Pedersen JT; Al-Rascheid KAS; Bamberg E; Palmgren M; Dreyer I; Nagel G; Hedrich R; Becker D
    Proc Natl Acad Sci U S A; 2020 Aug; 117(34):20920-20925. PubMed ID: 32788371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The form and function of channelrhodopsin.
    Deisseroth K; Hegemann P
    Science; 2017 Sep; 357(6356):. PubMed ID: 28912215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cation and Anion Channelrhodopsins: Sequence Motifs and Taxonomic Distribution.
    Govorunova EG; Sineshchekov OA; Li H; Wang Y; Brown LS; Palmateer A; Melkonian M; Cheng S; Carpenter E; Patterson J; Wong GK; Spudich JL
    mBio; 2021 Aug; 12(4):e0165621. PubMed ID: 34281394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting of Photoreceptor Genes in
    Greiner A; Kelterborn S; Evers H; Kreimer G; Sizova I; Hegemann P
    Plant Cell; 2017 Oct; 29(10):2498-2518. PubMed ID: 28978758
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Channelrhodopsins: From Phototaxis to Optogenetics.
    Govorunova EG; Sineshchekov OA
    Biochemistry (Mosc); 2023 Oct; 88(10):1555-1570. PubMed ID: 38105024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Channelrhodopsin-1: a light-gated proton channel in green algae.
    Nagel G; Ollig D; Fuhrmann M; Kateriya S; Musti AM; Bamberg E; Hegemann P
    Science; 2002 Jun; 296(5577):2395-8. PubMed ID: 12089443
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structure of the red light-activated channelrhodopsin Chrimson.
    Oda K; Vierock J; Oishi S; Rodriguez-Rozada S; Taniguchi R; Yamashita K; Wiegert JS; Nishizawa T; Hegemann P; Nureki O
    Nat Commun; 2018 Sep; 9(1):3949. PubMed ID: 30258177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation.
    Tsunoda SP; Hegemann P
    Photochem Photobiol; 2009; 85(2):564-9. PubMed ID: 19192197
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.