These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 36434012)

  • 1. Global landscape of replicative DNA polymerase usage in the human genome.
    Koyanagi E; Kakimoto Y; Minamisawa T; Yoshifuji F; Natsume T; Higashitani A; Ogi T; Carr AM; Kanemaki MT; Daigaku Y
    Nat Commun; 2022 Nov; 13(1):7221. PubMed ID: 36434012
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of Replicative Polymerase Usage by Ribonucleotide Incorporation.
    Keszthelyi A; Miyabe I; Ptasińska K; Daigaku Y; Naiman K; Carr AM
    Methods Mol Biol; 2018; 1672():239-259. PubMed ID: 29043629
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A global profile of replicative polymerase usage.
    Daigaku Y; Keszthelyi A; Müller CA; Miyabe I; Brooks T; Retkute R; Hubank M; Nieduszynski CA; Carr AM
    Nat Struct Mol Biol; 2015 Mar; 22(3):192-198. PubMed ID: 25664722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An updated perspective on the polymerase division of labor during eukaryotic DNA replication.
    Guilliam TA; Yeeles JTP
    Crit Rev Biochem Mol Biol; 2020 Oct; 55(5):469-481. PubMed ID: 32883112
    [TBL] [Abstract][Full Text] [Related]  

  • 5. tau couples the leading- and lagging-strand polymerases at the Escherichia coli DNA replication fork.
    Kim S; Dallmann HG; McHenry CS; Marians KJ
    J Biol Chem; 1996 Aug; 271(35):21406-12. PubMed ID: 8702922
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping ribonucleotides in genomic DNA and exploring replication dynamics by polymerase usage sequencing (Pu-seq).
    Keszthelyi A; Daigaku Y; Ptasińska K; Miyabe I; Carr AM
    Nat Protoc; 2015 Nov; 10(11):1786-801. PubMed ID: 26492137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism of replicative DNA polymerase delta pausing and a potential role for DNA polymerase kappa in common fragile site replication.
    Walsh E; Wang X; Lee MY; Eckert KA
    J Mol Biol; 2013 Jan; 425(2):232-43. PubMed ID: 23174185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Replication dynamics of recombination-dependent replication forks.
    Naiman K; Campillo-Funollet E; Watson AT; Budden A; Miyabe I; Carr AM
    Nat Commun; 2021 Feb; 12(1):923. PubMed ID: 33568651
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A solution to release twisted DNA during chromosome replication by coupled DNA polymerases.
    Kurth I; Georgescu RE; O'Donnell ME
    Nature; 2013 Apr; 496(7443):119-22. PubMed ID: 23535600
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pfh1 Is an Accessory Replicative Helicase that Interacts with the Replisome to Facilitate Fork Progression and Preserve Genome Integrity.
    McDonald KR; Guise AJ; Pourbozorgi-Langroudi P; Cristea IM; Zakian VA; Capra JA; Sabouri N
    PLoS Genet; 2016 Sep; 12(9):e1006238. PubMed ID: 27611590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Methods to study the coupling between replicative helicase and leading-strand DNA polymerase at the replication fork.
    Nandakumar D; Patel SS
    Methods; 2016 Oct; 108():65-78. PubMed ID: 27173619
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genome-wide measurement of DNA replication fork directionality and quantification of DNA replication initiation and termination with Okazaki fragment sequencing.
    Wu X; Liu Y; d'Aubenton-Carafa Y; Thermes C; Hyrien O; Chen CL; Petryk N
    Nat Protoc; 2023 Apr; 18(4):1260-1295. PubMed ID: 36653528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arranging eukaryotic nuclear DNA polymerases for replication: Specific interactions with accessory proteins arrange Pols α, δ, and ϵ in the replisome for leading-strand and lagging-strand DNA replication.
    Kunkel TA; Burgers PMJ
    Bioessays; 2017 Aug; 39(8):. PubMed ID: 28749073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uncoupling of leading- and lagging-strand DNA replication during lesion bypass in vivo.
    Pagès V; Fuchs RP
    Science; 2003 May; 300(5623):1300-3. PubMed ID: 12764199
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional coupling of leading-strand and lagging-strand DNA synthesis at bacteriophage T4 replication forks.
    Kadyrov FA; Drake JW
    J Biol Chem; 2001 Aug; 276(31):29559-66. PubMed ID: 11390383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short CCG repeat in huntingtin gene is an obstacle for replicative DNA polymerases, potentially hampering progression of replication fork.
    Le HP; Masuda Y; Tsurimoto T; Maki S; Katayama T; Furukohri A; Maki H
    Genes Cells; 2015 Oct; 20(10):817-33. PubMed ID: 26271349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The roles of DNA polymerase ζ and the Y family DNA polymerases in promoting or preventing genome instability.
    Sharma S; Helchowski CM; Canman CE
    Mutat Res; 2013; 743-744():97-110. PubMed ID: 23195997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DNA polymerases eta and kappa exchange with the polymerase delta holoenzyme to complete common fragile site synthesis.
    Barnes RP; Hile SE; Lee MY; Eckert KA
    DNA Repair (Amst); 2017 Sep; 57():1-11. PubMed ID: 28605669
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous formation of functional leading and lagging strand holoenzyme complexes on a small, defined DNA substrate.
    Berdis AJ; Benkovic SJ
    Proc Natl Acad Sci U S A; 1998 Sep; 95(19):11128-33. PubMed ID: 9736701
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coordination of leading and lagging strand DNA synthesis at the replication fork of bacteriophage T7.
    Debyser Z; Tabor S; Richardson CC
    Cell; 1994 Apr; 77(1):157-66. PubMed ID: 8156591
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.