These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 36434012)

  • 21. Independent and Stochastic Action of DNA Polymerases in the Replisome.
    Graham JE; Marians KJ; Kowalczykowski SC
    Cell; 2017 Jun; 169(7):1201-1213.e17. PubMed ID: 28622507
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Differential arrival of leading and lagging strand DNA polymerases at fission yeast telomeres.
    Moser BA; Subramanian L; Chang YT; Noguchi C; Noguchi E; Nakamura TM
    EMBO J; 2009 Apr; 28(7):810-20. PubMed ID: 19214192
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gap-filling and bypass at the replication fork are both active mechanisms for tolerance of low-dose ultraviolet-induced DNA damage in the human genome.
    Quinet A; Vessoni AT; Rocha CR; Gottifredi V; Biard D; Sarasin A; Menck CF; Stary A
    DNA Repair (Amst); 2014 Feb; 14():27-38. PubMed ID: 24380689
    [TBL] [Abstract][Full Text] [Related]  

  • 24. An updated structural classification of replicative DNA polymerases.
    Raia P; Delarue M; Sauguet L
    Biochem Soc Trans; 2019 Feb; 47(1):239-249. PubMed ID: 30647142
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacillus subtilis DNA polymerases, PolC and DnaE, are required for both leading and lagging strand synthesis in SPP1 origin-dependent DNA replication.
    Seco EM; Ayora S
    Nucleic Acids Res; 2017 Aug; 45(14):8302-8313. PubMed ID: 28575448
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Translesion polymerase kappa-dependent DNA synthesis underlies replication fork recovery.
    Tonzi P; Yin Y; Lee CWT; Rothenberg E; Huang TT
    Elife; 2018 Nov; 7():. PubMed ID: 30422114
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Association of Mutations in Replicative DNA Polymerase Genes with Human Disease: Possible Application of
    Yamaguchi M; Cotterill S
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175782
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall.
    Yu C; Gan H; Han J; Zhou ZX; Jia S; Chabes A; Farrugia G; Ordog T; Zhang Z
    Mol Cell; 2014 Nov; 56(4):551-63. PubMed ID: 25449133
    [TBL] [Abstract][Full Text] [Related]  

  • 29. OKseqHMM: a genome-wide replication fork directionality analysis toolkit.
    Liu Y; Wu X; d'Aubenton-Carafa Y; Thermes C; Chen CL
    Nucleic Acids Res; 2023 Feb; 51(4):e22. PubMed ID: 36629249
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strand-Specific Analysis of DNA Synthesis and Proteins Association with DNA Replication Forks in Budding Yeast.
    Yu C; Gan H; Zhang Z
    Methods Mol Biol; 2018; 1672():227-238. PubMed ID: 29043628
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Activity and fidelity of human DNA polymerase α depend on primer structure.
    Baranovskiy AG; Duong VN; Babayeva ND; Zhang Y; Pavlov YI; Anderson KS; Tahirov TH
    J Biol Chem; 2018 May; 293(18):6824-6843. PubMed ID: 29555682
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Binding Affinities among DNA Helicase-Primase, DNA Polymerase, and Replication Intermediates in the Replisome of Bacteriophage T7.
    Zhang H; Tang Y; Lee SJ; Wei Z; Cao J; Richardson CC
    J Biol Chem; 2016 Jan; 291(3):1472-80. PubMed ID: 26620561
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Kinetic mechanism of DNA polymerization catalyzed by human DNA polymerase ε.
    Zahurancik WJ; Klein SJ; Suo Z
    Biochemistry; 2013 Oct; 52(40):7041-9. PubMed ID: 24020356
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impaired replication dynamics at the FRA3B common fragile site.
    Palakodeti A; Lucas I; Jiang Y; Young DJ; Fernald AA; Karrison T; Le Beau MM
    Hum Mol Genet; 2010 Jan; 19(1):99-110. PubMed ID: 19815620
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site.
    Letessier A; Millot GA; Koundrioukoff S; Lachagès AM; Vogt N; Hansen RS; Malfoy B; Brison O; Debatisse M
    Nature; 2011 Feb; 470(7332):120-3. PubMed ID: 21258320
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Symmetric activity of DNA polymerases at and recruitment of exonuclease ExoR and of PolA to the Bacillus subtilis replication forks.
    Hernández-Tamayo R; Oviedo-Bocanegra LM; Fritz G; Graumann PL
    Nucleic Acids Res; 2019 Sep; 47(16):8521-8536. PubMed ID: 31251806
    [TBL] [Abstract][Full Text] [Related]  

  • 37. DNA polymerase δ proofreads errors made by DNA polymerase ε.
    Bulock CR; Xing X; Shcherbakova PV
    Proc Natl Acad Sci U S A; 2020 Mar; 117(11):6035-6041. PubMed ID: 32123096
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-molecule analysis reveals that the lagging strand increases replisome processivity but slows replication fork progression.
    Yao NY; Georgescu RE; Finkelstein J; O'Donnell ME
    Proc Natl Acad Sci U S A; 2009 Aug; 106(32):13236-41. PubMed ID: 19666586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Genetic control of translesion synthesis on leading and lagging DNA strands in plasmids derived from Epstein-Barr virus in human cells.
    Yoon JH; Prakash S; Prakash L
    mBio; 2012; 3(5):e00271-12. PubMed ID: 22967980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of specialized DNA polymerases in the limitation of replicative stress and DNA damage transmission.
    Bournique E; Dall'Osto M; Hoffmann JS; Bergoglio V
    Mutat Res; 2018 Mar; 808():62-73. PubMed ID: 28843435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.