These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 36434030)

  • 1. A continuous-time stochastic Boolean model provides a quantitative description of the budding yeast cell cycle.
    Laomettachit T; Kraikivski P; Tyson JJ
    Sci Rep; 2022 Nov; 12(1):20302. PubMed ID: 36434030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A hybrid stochastic model of the budding yeast cell cycle.
    Ahmadian M; Tyson JJ; Peccoud J; Cao Y
    NPJ Syst Biol Appl; 2020 Mar; 6(1):7. PubMed ID: 32221305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Model of Yeast Cell-Cycle Regulation Based on a Standard Component Modeling Strategy for Protein Regulatory Networks.
    Laomettachit T; Chen KC; Baumann WT; Tyson JJ
    PLoS One; 2016; 11(5):e0153738. PubMed ID: 27187804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A checkpoints capturing timing-robust Boolean model of the budding yeast cell cycle regulatory network.
    Hong C; Lee M; Kim D; Kim D; Cho KH; Shin I
    BMC Syst Biol; 2012 Sep; 6():129. PubMed ID: 23017186
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ergodic sets as cell phenotype of budding yeast cell cycle.
    Todd RG; Helikar T
    PLoS One; 2012; 7(10):e45780. PubMed ID: 23049686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous time Boolean modeling for biological signaling: application of Gillespie algorithm.
    Stoll G; Viara E; Barillot E; Calzone L
    BMC Syst Biol; 2012 Aug; 6():116. PubMed ID: 22932419
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A stochastic model of size control in the budding yeast cell cycle.
    Ahmadian M; Tyson JJ; Cao Y
    BMC Bioinformatics; 2019 Jun; 20(Suppl 12):322. PubMed ID: 31216979
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A hybrid model of mammalian cell cycle regulation.
    Singhania R; Sramkoski RM; Jacobberger JW; Tyson JJ
    PLoS Comput Biol; 2011 Feb; 7(2):e1001077. PubMed ID: 21347318
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic Boolean networks: an efficient approach to modeling gene regulatory networks.
    Liang J; Han J
    BMC Syst Biol; 2012 Aug; 6():113. PubMed ID: 22929591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrative analysis of cell cycle control in budding yeast.
    Chen KC; Calzone L; Csikasz-Nagy A; Cross FR; Novak B; Tyson JJ
    Mol Biol Cell; 2004 Aug; 15(8):3841-62. PubMed ID: 15169868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-Newton Stochastic Optimization Algorithm for Parameter Estimation of a Stochastic Model of the Budding Yeast Cell Cycle.
    Chen M; Amos BD; Watson LT; Tyson JJ; Cao Y; Shaffer CA; Trosset MW; Oguz C; Kakoti G
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(1):301-311. PubMed ID: 29990127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extended Robust Boolean Network of Budding Yeast Cell Cycle.
    Shafiekhani S; Shafiekhani M; Rahbar S; Jafari AH
    J Med Signals Sens; 2020; 10(2):94-104. PubMed ID: 32676445
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interplay of transcriptional and proteolytic regulation in driving robust cell cycle progression.
    Freire P; Vinod PK; Novak B
    Mol Biosyst; 2012 Mar; 8(3):863-70. PubMed ID: 22237794
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid modeling and simulation of stochastic effects on progression through the eukaryotic cell cycle.
    Liu Z; Pu Y; Li F; Shaffer CA; Hoops S; Tyson JJ; Cao Y
    J Chem Phys; 2012 Jan; 136(3):034105. PubMed ID: 22280742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boolean factor graph model for biological systems: the yeast cell-cycle network.
    Kotiang S; Eslami A
    BMC Bioinformatics; 2021 Sep; 22(1):442. PubMed ID: 34535069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. G1 and G2 arrests in response to osmotic shock are robust properties of the budding yeast cell cycle.
    Waltermann C; Floettmann M; Klipp E
    Genome Inform; 2010; 24():204-17. PubMed ID: 22081601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Logical analysis of the budding yeast cell cycle.
    Irons DJ
    J Theor Biol; 2009 Apr; 257(4):543-59. PubMed ID: 19185585
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Stochastic Model of the Yeast Cell Cycle Reveals Roles for Feedback Regulation in Limiting Cellular Variability.
    Barik D; Ball DA; Peccoud J; Tyson JJ
    PLoS Comput Biol; 2016 Dec; 12(12):e1005230. PubMed ID: 27935947
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic Petri Net extension of a yeast cell cycle model.
    Mura I; Csikász-Nagy A
    J Theor Biol; 2008 Oct; 254(4):850-60. PubMed ID: 18703074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time scale and dimension analysis of a budding yeast cell cycle model.
    Lovrics A; Csikász-Nagy A; Zsély IG; Zádor J; Turányi T; Novák B
    BMC Bioinformatics; 2006 Nov; 7():494. PubMed ID: 17094799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.