These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36434330)

  • 1. Automatic assessment of calcified plaque and nodule by optical coherence tomography adopting deep learning model.
    Chen T; Yu H; Jia H; Dai J; Fang C; Ma L; Liu H; Xu M; Yu B
    Int J Cardiovasc Imaging; 2022 Nov; 38(11):2501-2510. PubMed ID: 36434330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo diagnosis of plaque erosion and calcified nodule in patients with acute coronary syndrome by intravascular optical coherence tomography.
    Jia H; Abtahian F; Aguirre AD; Lee S; Chia S; Lowe H; Kato K; Yonetsu T; Vergallo R; Hu S; Tian J; Lee H; Park SJ; Jang YS; Raffel OC; Mizuno K; Uemura S; Itoh T; Kakuta T; Choi SY; Dauerman HL; Prasad A; Toma C; McNulty I; Zhang S; Yu B; Fuster V; Narula J; Virmani R; Jang IK
    J Am Coll Cardiol; 2013 Nov; 62(19):1748-58. PubMed ID: 23810884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning-based model for characterization of atherosclerotic plaque in coronary arteries using optical coherence tomography  images.
    Abdolmanafi A; Duong L; Ibrahim R; Dahdah N
    Med Phys; 2021 Jul; 48(7):3511-3524. PubMed ID: 33914917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ex Vivo Assessment of Coronary Atherosclerotic Plaque by Grating-Based Phase-Contrast Computed Tomography: Correlation With Optical Coherence Tomography.
    Habbel C; Hetterich H; Willner M; Herzen J; Steigerwald K; Auweter S; Schüller U; Hausleiter J; Massberg S; Reiser M; Pfeiffer F; Saam T; Bamberg F
    Invest Radiol; 2017 Apr; 52(4):223-231. PubMed ID: 28079701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid lipid-laden plaque identification in intravascular optical coherence tomography imaging based on time-series deep learning.
    Rico-Jimenez JJ; Jo JA
    J Biomed Opt; 2022 Oct; 27(10):. PubMed ID: 36307914
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optical Coherence Tomography Comparison of Percutaneous Coronary Intervention Among Plaque Rupture, Erosion, and Calcified Nodule in Acute Myocardial Infarction.
    Khalifa AKM; Kubo T; Ino Y; Terada K; Emori H; Higashioka D; Katayama Y; Takahata M; Shimamura K; Shiono Y; Matsuo Y; Tanaka A; Hozumi T; Akasaka T
    Circ J; 2020 May; 84(6):911-916. PubMed ID: 32307358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Segmentation of Coronary Calcified Plaque in Intravascular OCT Images Using a Two-Step Deep Learning Approach.
    Lee J; Gharaibeh Y; Kolluru C; Zimin VN; Dallan LAP; Kim JN; Bezerra HG; Wilson DL
    IEEE Access; 2020; 8():225581-225593. PubMed ID: 33598377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Deep Learning Methods for Binarization of the Choroid in Optical Coherence Tomography Images.
    Muller J; Alonso-Caneiro D; Read SA; Vincent SJ; Collins MJ
    Transl Vis Sci Technol; 2022 Feb; 11(2):23. PubMed ID: 35157030
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Combined Optical Coherence Tomography and Intravascular Ultrasound Study on Plaque Rupture, Plaque Erosion, and Calcified Nodule in Patients With ST-Segment Elevation Myocardial Infarction: Incidence, Morphologic Characteristics, and Outcomes After Percutaneous Coronary Intervention.
    Higuma T; Soeda T; Abe N; Yamada M; Yokoyama H; Shibutani S; Vergallo R; Minami Y; Ong DS; Lee H; Okumura K; Jang IK
    JACC Cardiovasc Interv; 2015 Aug; 8(9):1166-1176. PubMed ID: 26117464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Artificial intelligence and optical coherence tomography for the automatic characterisation of human atherosclerotic plaques.
    Chu M; Jia H; Gutiérrez-Chico JL; Maehara A; Ali ZA; Zeng X; He L; Zhao C; Matsumura M; Wu P; Zeng M; Kubo T; Xu B; Chen L; Yu B; Mintz GS; Wijns W; Holm NR; Tu S
    EuroIntervention; 2021 May; 17(1):41-50. PubMed ID: 33528359
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning-based atherosclerotic coronary plaque segmentation on coronary CT angiography.
    Jávorszky N; Homonnay B; Gerstenblith G; Bluemke D; Kiss P; Török M; Celentano D; Lai H; Lai S; Kolossváry M
    Eur Radiol; 2022 Oct; 32(10):7217-7226. PubMed ID: 35524783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Diagnosis of Plaque Erosion by Deep Learning in Patients With Acute Coronary Syndromes.
    Park S; Araki M; Nakajima A; Lee H; Fuster V; Ye JC; Jang IK
    JACC Cardiovasc Interv; 2022 Oct; 15(20):2020-2031. PubMed ID: 36265933
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of coronary plaques and atherosclerosis using optical coherence tomography.
    Shimamura K; Kubo T; Akasaka T
    Expert Rev Cardiovasc Ther; 2021 May; 19(5):379-386. PubMed ID: 33823735
    [No Abstract]   [Full Text] [Related]  

  • 14. [In vivo detection of coronary artery calcification by optical coherence tomography.].
    Katayama Y; Kubo T; Akasaka T
    Clin Calcium; 2019; 29(2):199-205. PubMed ID: 30679401
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diagnostic Accuracy of 320-Row Computed Tomography for Characterizing Coronary Atherosclerotic Plaques: Comparison with Intravascular Optical Coherence Tomography.
    Ybarra LF; Szarf G; Ishikawa W; Chamié D; Caixeta A; Puri R; Perin MA
    Cardiovasc Revasc Med; 2020 May; 21(5):640-646. PubMed ID: 31501019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vivo coronary lesion differentiation with computed tomography angiography and intravascular ultrasound as compared to optical coherence tomography.
    Wieringa WG; Lexis CP; Lipsic E; van der Werf HW; Burgerhof JG; Hagens VE; Bartels GL; Broersen A; Schurer RA; Tan ES; van der Harst P; van den Heuvel AF; Willems TP; Pundziute G
    J Cardiovasc Comput Tomogr; 2017; 11(2):111-118. PubMed ID: 28169175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical coherence tomography-guided percutaneous coronary intervention: a review of current clinical applications.
    Kurogi K; Ishii M; Yamamoto N; Yamanaga K; Tsujita K
    Cardiovasc Interv Ther; 2021 Apr; 36(2):169-177. PubMed ID: 33454867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel alignment procedure to assess calcified coronary plaques in histopathology, post-mortem computed tomography angiography and optical coherence tomography.
    Precht H; Broersen A; Kitslaar PH; Dijkstra J; Gerke O; Thygesen J; Egstrup K; Leth PM; Hardt-Madsen M; Nielsen B; Falk E; Lambrechtsen J
    Cardiovasc Pathol; 2019; 39():25-29. PubMed ID: 30597423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automatic Detection of Atherosclerotic Plaque and Calcification From Intravascular Ultrasound Images by Using Deep Convolutional Neural Networks.
    Li YC; Shen TY; Chen CC; Chang WT; Lee PY; Huang CJ
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 May; 68(5):1762-1772. PubMed ID: 33460377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The use of optical coherence tomography in acute coronary syndrome.
    Matsuo Y; Kubo T; Akasaka T
    Expert Rev Cardiovasc Ther; 2016; 14(5):649-57. PubMed ID: 26795131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.