These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 36434497)

  • 21. Phylotranscriptomic analyses reveal multiple whole-genome duplication events, the history of diversification and adaptations in the Araceae.
    Zhao L; Yang YY; Qu XJ; Ma H; Hu Y; Li HT; Yi TS; Li DZ
    Ann Bot; 2023 Feb; 131(1):199-214. PubMed ID: 35671385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Whole Genome Duplication in Plants: Implications for Evolutionary Analysis.
    Sankoff D; Zheng C
    Methods Mol Biol; 2018; 1704():291-315. PubMed ID: 29277870
    [TBL] [Abstract][Full Text] [Related]  

  • 23. AleRax: a tool for gene and species tree co-estimation and reconciliation under a probabilistic model of gene duplication, transfer, and loss.
    Morel B; Williams TA; Stamatakis A; Szöllősi GJ
    Bioinformatics; 2024 Mar; 40(4):. PubMed ID: 38514421
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Temporal pattern of loss/persistence of duplicate genes involved in signal transduction and metabolic pathways after teleost-specific genome duplication.
    Sato Y; Hashiguchi Y; Nishida M
    BMC Evol Biol; 2009 Jun; 9():127. PubMed ID: 19500364
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Species-tree topology impacts the inference of ancient whole-genome duplications across the angiosperm phylogeny.
    McKibben MTW; Finch G; Barker MS
    Am J Bot; 2024 Jul; ():e16378. PubMed ID: 39039654
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Whole-genome duplication in teleost fishes and its evolutionary consequences.
    Glasauer SM; Neuhauss SC
    Mol Genet Genomics; 2014 Dec; 289(6):1045-60. PubMed ID: 25092473
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data.
    Tiley GP; Ané C; Burleigh JG
    Genome Biol Evol; 2016 Apr; 8(4):1023-37. PubMed ID: 26988251
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Evolution of Gene Duplicates in Angiosperms and the Impact of Protein-Protein Interactions and the Mechanism of Duplication.
    Defoort J; Van de Peer Y; Carretero-Paulet L
    Genome Biol Evol; 2019 Aug; 11(8):2292-2305. PubMed ID: 31364708
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Models for gene duplication when dosage balance works as a transition state to subsequent neo-or sub-functionalization.
    Teufel AI; Liu L; Liberles DA
    BMC Evol Biol; 2016 Feb; 16():45. PubMed ID: 26897341
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Expression and regulatory asymmetry of retained Arabidopsis thaliana transcription factor genes derived from whole genome duplication.
    Panchy NL; Azodi CB; Winship EF; O'Malley RC; Shiu SH
    BMC Evol Biol; 2019 Mar; 19(1):77. PubMed ID: 30866803
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genesis of the vertebrate FoxP subfamily member genes occurred during two ancestral whole genome duplication events.
    Song X; Tang Y; Wang Y
    Gene; 2016 Aug; 588(2):156-62. PubMed ID: 27188254
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Syntenic block overlap multiplicities with a panel of reference genomes provide a signature of ancient polyploidization events.
    Zheng C; Santos Muñoz D; Albert VA; Sankoff D
    BMC Genomics; 2015; 16 Suppl 10(Suppl 10):S8. PubMed ID: 26449933
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dosage balance acts as a time-dependent selective barrier to subfunctionalization.
    Wilson AE; Liberles DA
    BMC Ecol Evol; 2023 May; 23(1):14. PubMed ID: 37138246
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Contrasting patterns of evolution following whole genome versus tandem duplication events in Populus.
    Rodgers-Melnick E; Mane SP; Dharmawardhana P; Slavov GT; Crasta OR; Strauss SH; Brunner AM; Difazio SP
    Genome Res; 2012 Jan; 22(1):95-105. PubMed ID: 21974993
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic adaptation after whole genome duplication.
    van Hoek MJ; Hogeweg P
    Mol Biol Evol; 2009 Nov; 26(11):2441-53. PubMed ID: 19625390
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary Contribution of Duplicated Genes to Genome Evolution in the Ginseng Species Complex.
    Li MR; Ding N; Lu T; Zhao J; Wang ZH; Jiang P; Liu ST; Wang XF; Liu B; Li LF
    Genome Biol Evol; 2021 May; 13(5):. PubMed ID: 33713106
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Both mechanism and age of duplications contribute to biased gene retention patterns in plants.
    Rody HV; Baute GJ; Rieseberg LH; Oliveira LO
    BMC Genomics; 2017 Jan; 18(1):46. PubMed ID: 28061859
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Phylogenomics reveals an extensive history of genome duplication in diatoms (Bacillariophyta).
    Parks MB; Nakov T; Ruck EC; Wickett NJ; Alverson AJ
    Am J Bot; 2018 Mar; 105(3):330-347. PubMed ID: 29665021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Extracting functional trends from whole genome duplication events using comparative genomics.
    Hermansen RA; Hvidsten TR; Sandve SR; Liberles DA
    Biol Proced Online; 2016; 18():11. PubMed ID: 27168732
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Insights into three whole-genome duplications gleaned from the Paramecium caudatum genome sequence.
    McGrath CL; Gout JF; Doak TG; Yanagi A; Lynch M
    Genetics; 2014 Aug; 197(4):1417-28. PubMed ID: 24840360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.