These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Rapid UHPLC-MS metabolite profiling and phenotypic assays reveal genotypic impacts of nitrogen supplementation in oats. Allwood JW; Xu Y; Martinez-Martin P; Palau R; Cowan A; Goodacre R; Marshall A; Stewart D; Howarth C Metabolomics; 2019 Mar; 15(3):42. PubMed ID: 30868357 [TBL] [Abstract][Full Text] [Related]
3. Nutritional and Phytochemical Composition and Associated Health Benefits of Oat ( Alemayehu GF; Forsido SF; Tola YB; Amare E ScientificWorldJournal; 2023; 2023():2730175. PubMed ID: 37492342 [TBL] [Abstract][Full Text] [Related]
4. Identification and Quantification of Avenanthramides and Free and Bound Phenolic Acids in Eight Cultivars of Husked Oat ( Avena sativa L) from Finland. Multari S; Pihlava JM; Ollennu-Chuasam P; Hietaniemi V; Yang B; Suomela JP J Agric Food Chem; 2018 Mar; 66(11):2900-2908. PubMed ID: 29478323 [TBL] [Abstract][Full Text] [Related]
5. Remediation of cobalt-polluted soil after application of selected substances and using oat (Avena sativa L.). Kosiorek M; Wyszkowski M Environ Sci Pollut Res Int; 2019 Jun; 26(16):16762-16780. PubMed ID: 30997643 [TBL] [Abstract][Full Text] [Related]
6. Application of Cellulase for Contributing Phenolic Release and Conversion in Oats (Avena sativa L.) During Microbial Fermentation. Li Y; Luo D; Li T; Zhao W; Chen G Appl Biochem Biotechnol; 2023 Jul; 195(7):4277-4291. PubMed ID: 36689163 [TBL] [Abstract][Full Text] [Related]
7. Growth and chemical changes in the rhizosphere of black oat (Avena strigosa) grown in soils contaminated with copper. De Conti L; Ceretta CA; Tiecher TL; da Silva LOS; Tassinari A; Somavilla LM; Mimmo T; Cesco S; Brunetto G Ecotoxicol Environ Saf; 2018 Nov; 163():19-27. PubMed ID: 30031941 [TBL] [Abstract][Full Text] [Related]
8. Effect of chemical systemic acquired resistance elicitors on avenanthramide biosynthesis in oat (Avena sativa). Wise ML J Agric Food Chem; 2011 Jul; 59(13):7028-38. PubMed ID: 21598950 [TBL] [Abstract][Full Text] [Related]
9. Effects of Milk Proteins on the Bioaccessibility and Antioxidant Activity of Oat Phenolics During In Vitro Digestion. Chen C; Wang L; Chen Z; Luo X; Li Y; Wang R; Li J; Li Y; Wang T; Wu J J Food Sci; 2019 Apr; 84(4):895-903. PubMed ID: 30977921 [TBL] [Abstract][Full Text] [Related]
10. Changes in Plant and Grain Quality of Winter Oat ( Kutasy E; Diósi G; Buday-Bódi E; Nagy PT; Melash AA; Forgács FZ; Virág IC; Vad AM; Bytyqi B; Buday T; Csajbók J Plants (Basel); 2023 Feb; 12(4):. PubMed ID: 36840318 [TBL] [Abstract][Full Text] [Related]
11. A comparison between whole grain and pearled oats: acute postprandial glycaemic responses and in vitro carbohydrate digestion in healthy subjects. Zhu R; Fan Z; Li G; Wu Y; Zhao W; Ye T; Wang L Eur J Nutr; 2020 Sep; 59(6):2345-2355. PubMed ID: 31552500 [TBL] [Abstract][Full Text] [Related]
12. Content of macronutrients in oat (Avena sativa L.) after remediation of soil polluted with cobalt. Kosiorek M; Wyszkowski M Environ Monit Assess; 2019 May; 191(6):389. PubMed ID: 31119483 [TBL] [Abstract][Full Text] [Related]
13. Effect of Soil Drought Stress on Selected Biochemical Parameters and Yield of Oat × Maize Addition (OMA) Lines. Warzecha T; Bocianowski J; Warchoł M; Bathelt R; Sutkowska A; Skrzypek E Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762208 [TBL] [Abstract][Full Text] [Related]
14. Oats in healthy gluten-free and regular diets: A perspective. Smulders MJM; van de Wiel CCM; van den Broeck HC; van der Meer IM; Israel-Hoevelaken TPM; Timmer RD; van Dinter BJ; Braun S; Gilissen LJWJ Food Res Int; 2018 Aug; 110():3-10. PubMed ID: 30029703 [TBL] [Abstract][Full Text] [Related]
15. Phenolic compounds in oat grains (Avena sativa L.) grown in conventional and organic systems. Dimberg LH; Gissén C; Nilsson J Ambio; 2005 Jun; 34(4-5):331-7. PubMed ID: 16092265 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of bioactive compounds in cereals. Study of wheat, barley, oat and selected grain products. Nogala-Kałucka M; Kawka A; Dwiecki K; Siger A Acta Sci Pol Technol Aliment; 2020; 19(4):405-423. PubMed ID: 33179481 [TBL] [Abstract][Full Text] [Related]
17. Physiological and nutritional status of black oat (Avena strigosa Schreb.) grown in soil with interaction of high doses of copper and zinc. Tiecher TL; Tiecher T; Ceretta CA; Ferreira PA; Nicoloso FT; Soriani HH; Tassinari A; Paranhos JT; De Conti L; Brunetto G Plant Physiol Biochem; 2016 Sep; 106():253-63. PubMed ID: 27209215 [TBL] [Abstract][Full Text] [Related]
18. Enhancement of γ-aminobutyric acid, avenanthramides, and other health-promoting metabolites in germinating oats (Avena sativa L.) treated with and without power ultrasound. Ding J; Johnson J; Chu YF; Feng H Food Chem; 2019 Jun; 283():239-247. PubMed ID: 30722867 [TBL] [Abstract][Full Text] [Related]
19. [Effects of moisture and humic acid on the metabolism of oat fructans]. Li YH; Wang Q; Zhao BP; Mi JZ; Liu YD; Zhang ZF; Liu JH Ying Yong Sheng Tai Xue Bao; 2022 May; 33(5):1320-1330. PubMed ID: 35730091 [TBL] [Abstract][Full Text] [Related]
20. Effects of drought stress during critical periods on the photosynthetic characteristics and production performance of Naked oat (Avena nuda L.). Zhang X; Liu W; Lv Y; Li T; Tang J; Yang X; Bai J; Jin X; Zhou H Sci Rep; 2022 Jul; 12(1):11199. PubMed ID: 35778483 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]