These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36435633)

  • 21. Nanogel-based nasal vaccines for infectious and lifestyle-related diseases.
    Azegami T; Yuki Y; Nakahashi R; Itoh H; Kiyono H
    Mol Immunol; 2018 Jun; 98():19-24. PubMed ID: 29096936
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mucosal adjuvants for vaccines to control upper respiratory infections in the elderly.
    Fujihashi K; Sato S; Kiyono H
    Exp Gerontol; 2014 Jun; 54():21-6. PubMed ID: 24440991
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Intranasal vaccines for protection against respiratory and systemic bacterial infections.
    Oliveira ML; Arêas AP; Ho PL
    Expert Rev Vaccines; 2007 Jun; 6(3):419-29. PubMed ID: 17542756
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intranasal delivery of nanoparticle-based vaccines.
    Marasini N; Skwarczynski M; Toth I
    Ther Deliv; 2017 Jan; 8(3):151-167. PubMed ID: 28145824
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nasal-subcutaneous prime-boost regimen for inactivated whole-virus influenza vaccine efficiently protects mice against both upper and lower respiratory tract infections.
    Shibuya M; Tamiya S; Kawai A; Yoshioka Y
    Biochem Biophys Res Commun; 2021 May; 554():166-172. PubMed ID: 33798943
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bridging nanoplatform and vaccine delivery, a landscape of strategy to enhance nasal immunity.
    Teng Z; Meng LY; Yang JK; He Z; Chen XG; Liu Y
    J Control Release; 2022 Nov; 351():456-475. PubMed ID: 36174803
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A dilemma for mucosal vaccination: efficacy versus toxicity using enterotoxin-based adjuvants.
    Fujihashi K; Koga T; van Ginkel FW; Hagiwara Y; McGhee JR
    Vaccine; 2002 Jun; 20(19-20):2431-8. PubMed ID: 12057597
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Development of Nasal Vaccines and the Associated Challenges.
    Nian X; Zhang J; Huang S; Duan K; Li X; Yang X
    Pharmaceutics; 2022 Sep; 14(10):. PubMed ID: 36297419
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanogel-based antigen-delivery system for nasal vaccines.
    Yuki Y; Nochi T; Kong IG; Takahashi H; Sawada S; Akiyoshi K; Kiyono H
    Biotechnol Genet Eng Rev; 2013; 29():61-72. PubMed ID: 24568253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Immunogenicity of Antigen Adjuvanted with AS04 and Its Deposition in the Upper Respiratory Tract after Intranasal Administration.
    Xu H; Alzhrani RF; Warnken ZN; Thakkar SG; Zeng M; Smyth HDC; Williams RO; Cui Z
    Mol Pharm; 2020 Sep; 17(9):3259-3269. PubMed ID: 32787271
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human immune responses elicited by an intranasal inactivated H5 influenza vaccine.
    Ainai A; van Riet E; Ito R; Ikeda K; Senchi K; Suzuki T; Tamura SI; Asanuma H; Odagiri T; Tashiro M; Kurata T; Multihartina P; Setiawaty V; Pangesti KNA; Hasegawa H
    Microbiol Immunol; 2020 Apr; 64(4):313-325. PubMed ID: 31957054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intranasal inoculation of an MVA-based vaccine induces IgA and protects the respiratory tract of hACE2 mice from SARS-CoV-2 infection.
    Americo JL; Cotter CA; Earl PL; Liu R; Moss B
    Proc Natl Acad Sci U S A; 2022 Jun; 119(24):e2202069119. PubMed ID: 35679343
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra- and paracellular pathways.
    Li M; Zhao M; Fu Y; Li Y; Gong T; Zhang Z; Sun X
    J Control Release; 2016 Apr; 228():9-19. PubMed ID: 26941035
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Potential of Neuraminidase as an Antigen for Nasal Vaccines To Increase Cross-Protection against Influenza Viruses.
    Kawai A; Yamamoto Y; Nogimori T; Takeshita K; Yamamoto T; Yoshioka Y
    J Virol; 2021 Sep; 95(20):e0118021. PubMed ID: 34379511
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nasal delivery as a strategy for the prevention and treatment of COVID-19.
    Sonvico F; Colombo G; Quarta E; Guareschi F; Banella S; Buttini F; Scherließ R
    Expert Opin Drug Deliv; 2023; 20(8):1115-1130. PubMed ID: 37755135
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Further search for small molecular inactivants capable of eliciting respiratory mucosal immunogenicity by modifying Sendai virus core RNA.
    Miyamae T
    Microbiol Immunol; 1996; 40(10):761-6. PubMed ID: 8981350
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Current prospects and future challenges for nasal vaccine delivery.
    Yusuf H; Kett V
    Hum Vaccin Immunother; 2017 Jan; 13(1):34-45. PubMed ID: 27936348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nasal vaccine as a booster shot: a viable solution to restrict pandemic?
    Meenakshi S; Kumar VU; Dhingra S; Murti K
    Clin Exp Vaccine Res; 2022 May; 11(2):184-192. PubMed ID: 35799869
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Intranasal COVID-19 vaccine fails to induce mucosal immunity.
    Carvalho T
    Nat Med; 2022 Dec; 28(12):2439-2440. PubMed ID: 36329319
    [No Abstract]   [Full Text] [Related]  

  • 40. The challenges in developing effective canine infectious respiratory disease vaccines.
    Mitchell JA; Brownlie J
    J Pharm Pharmacol; 2015 Mar; 67(3):372-81. PubMed ID: 25736813
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.