BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 36435862)

  • 21. Novel nucleosomal particles containing core histones and linker DNA but no histone H1.
    Cole HA; Cui F; Ocampo J; Burke TL; Nikitina T; Nagarajavel V; Kotomura N; Zhurkin VB; Clark DJ
    Nucleic Acids Res; 2016 Jan; 44(2):573-81. PubMed ID: 26400169
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conformational selection and dynamic adaptation upon linker histone binding to the nucleosome.
    Öztürk MA; Pachov GV; Wade RC; Cojocaru V
    Nucleic Acids Res; 2016 Aug; 44(14):6599-613. PubMed ID: 27270081
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nucleosome dyad determines the H1 C-terminus collapse on distinct DNA arms.
    Louro JA; Boopathi R; Beinsteiner B; Mohideen Patel AK; Cheng TC; Angelov D; Hamiche A; Bendar J; Kale S; Klaholz BP; Dimitrov S
    Structure; 2023 Feb; 31(2):201-212.e5. PubMed ID: 36610392
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Contributions of histone tail clipping and acetylation in nucleosome transcription by RNA polymerase II.
    Oishi T; Hatazawa S; Kujirai T; Kato J; Kobayashi Y; Ogasawara M; Akatsu M; Ehara H; Sekine SI; Hayashi G; Takizawa Y; Kurumizaka H
    Nucleic Acids Res; 2023 Oct; 51(19):10364-10374. PubMed ID: 37718728
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chromatin remodeller Fun30
    Lee J; Choi ES; Seo HD; Kang K; Gilmore JM; Florens L; Washburn MP; Choe J; Workman JL; Lee D
    Nat Commun; 2017 Feb; 8():14527. PubMed ID: 28218250
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ACF catalyses chromatosome movements in chromatin fibres.
    Maier VK; Chioda M; Rhodes D; Becker PB
    EMBO J; 2008 Mar; 27(6):817-26. PubMed ID: 17962805
    [TBL] [Abstract][Full Text] [Related]  

  • 27. MNase Digestion Protection Patterns of the Linker DNA in Chromatosomes.
    Shen CH; Allan J
    Cells; 2021 Aug; 10(9):. PubMed ID: 34571888
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Dynamic Influence of Linker Histone Saturation within the Poly-Nucleosome Array.
    Woods DC; Rodríguez-Ropero F; Wereszczynski J
    J Mol Biol; 2021 May; 433(10):166902. PubMed ID: 33667509
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nucleosome binding by the polymerase I transactivator upstream binding factor displaces linker histone H1.
    Kermekchiev M; Workman JL; Pikaard CS
    Mol Cell Biol; 1997 Oct; 17(10):5833-42. PubMed ID: 9315641
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dynamics of RNA polymerase II and elongation factor Spt4/5 recruitment during activator-dependent transcription.
    Rosen GA; Baek I; Friedman LJ; Joo YJ; Buratowski S; Gelles J
    Proc Natl Acad Sci U S A; 2020 Dec; 117(51):32348-32357. PubMed ID: 33293419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural features of nucleosomes in interphase and metaphase chromosomes.
    Arimura Y; Shih RM; Froom R; Funabiki H
    Mol Cell; 2021 Nov; 81(21):4377-4397.e12. PubMed ID: 34478647
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Emerging roles of linker histones in regulating chromatin structure and function.
    Fyodorov DV; Zhou BR; Skoultchi AI; Bai Y
    Nat Rev Mol Cell Biol; 2018 Mar; 19(3):192-206. PubMed ID: 29018282
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Yeast HMO1: Linker Histone Reinvented.
    Panday A; Grove A
    Microbiol Mol Biol Rev; 2017 Mar; 81(1):. PubMed ID: 27903656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Binding Dynamics of Disordered Linker Histone H1 with a Nucleosomal Particle.
    Wu H; Dalal Y; Papoian GA
    J Mol Biol; 2021 Mar; 433(6):166881. PubMed ID: 33617899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Extended and dynamic linker histone-DNA Interactions control chromatosome compaction.
    Rudnizky S; Khamis H; Ginosar Y; Goren E; Melamed P; Kaplan A
    Mol Cell; 2021 Aug; 81(16):3410-3421.e4. PubMed ID: 34192510
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Toward an Ensemble View of Chromatosome Structure: A Paradigm Shift from One to Many.
    Öztürk MA; Cojocaru V; Wade RC
    Structure; 2018 Aug; 26(8):1050-1057. PubMed ID: 29937356
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Interactome of intact chromatosome variants with site-specifically ubiquitylated and acetylated linker histone H1.2.
    Saumer P; Scheffner M; Marx A; Stengel F
    Nucleic Acids Res; 2024 Jan; 52(1):101-113. PubMed ID: 37994785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification and Analysis of Six Phosphorylation Sites Within the Xenopus laevis Linker Histone H1.0 C-Terminal Domain Indicate Distinct Effects on Nucleosome Structure.
    Hao F; Mishra LN; Jaya P; Jones R; Hayes JJ
    Mol Cell Proteomics; 2022 Jul; 21(7):100250. PubMed ID: 35618225
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Epigallocatechin Gallate Affects the Structure of Chromatosomes, Nucleosomes and Their Complexes with PARP1.
    Andreeva TV; Maluchenko NV; Efremenko AV; Lyubitelev AV; Korovina AN; Afonin DA; Kirpichnikov MP; Studitsky VM; Feofanov AV
    Int J Mol Sci; 2023 Sep; 24(18):. PubMed ID: 37762491
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural basis of nucleosome deacetylation and DNA linker tightening by Rpd3S histone deacetylase complex.
    Dong S; Li H; Wang M; Rasheed N; Zou B; Gao X; Guan J; Li W; Zhang J; Wang C; Zhou N; Shi X; Li M; Zhou M; Huang J; Li H; Zhang Y; Wong KH; Zhang X; Chao WCH; He J
    Cell Res; 2023 Oct; 33(10):790-801. PubMed ID: 37666978
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.