BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 36436560)

  • 1. Kinetics of DNA strand transfer between polymerase and proofreading exonuclease active sites regulates error correction during high-fidelity replication.
    Dangerfield TL; Johnson KA
    J Biol Chem; 2023 Jan; 299(1):102744. PubMed ID: 36436560
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exonuclease proofreading by human mitochondrial DNA polymerase.
    Johnson AA; Johnson KA
    J Biol Chem; 2001 Oct; 276(41):38097-107. PubMed ID: 11477094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the 3'- to 5'-exonuclease activity of herpes simplex virus type 1 DNA polymerase to the fidelity of DNA synthesis.
    Song L; Chaudhuri M; Knopf CW; Parris DS
    J Biol Chem; 2004 Apr; 279(18):18535-43. PubMed ID: 14982924
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Substrate specificity and proposed structure of the proofreading complex of T7 DNA polymerase.
    Dangerfield TL; Kirmizialtin S; Johnson KA
    J Biol Chem; 2022 Mar; 298(3):101627. PubMed ID: 35074426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fidelity of DNA replication-a matter of proofreading.
    Bębenek A; Ziuzia-Graczyk I
    Curr Genet; 2018 Oct; 64(5):985-996. PubMed ID: 29500597
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polymerization and editing modes of a high-fidelity DNA polymerase are linked by a well-defined path.
    Dodd T; Botto M; Paul F; Fernandez-Leiro R; Lamers MH; Ivanov I
    Nat Commun; 2020 Oct; 11(1):5379. PubMed ID: 33097731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of nucleotide insertion and extension at 8-oxo-7,8-dihydroguanine by replicative T7 polymerase exo- and human immunodeficiency virus-1 reverse transcriptase using steady-state and pre-steady-state kinetics.
    Furge LL; Guengerich FP
    Biochemistry; 1997 May; 36(21):6475-87. PubMed ID: 9174365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On-off regulation of 3' exonuclease excision to DNA polymerization by Exo+ polymerase.
    Zhang J; Li K
    J Biochem Mol Biol; 2003 Nov; 36(6):525-8. PubMed ID: 14659068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extrinsic proofreading.
    Zhou ZX; Kunkel TA
    DNA Repair (Amst); 2022 Sep; 117():103369. PubMed ID: 35850061
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exonucleolytic proofreading enhances the fidelity of DNA synthesis by chick embryo DNA polymerase-gamma.
    Kunkel TA; Soni A
    J Biol Chem; 1988 Mar; 263(9):4450-9. PubMed ID: 2831231
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction.
    Donlin MJ; Patel SS; Johnson KA
    Biochemistry; 1991 Jan; 30(2):538-46. PubMed ID: 1988042
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3'-->5' exonuclease active site of phi 29 DNA polymerase. Evidence favoring a metal ion-assisted reaction mechanism.
    Esteban JA; Soengas MS; Salas M; Blanco L
    J Biol Chem; 1994 Dec; 269(50):31946-54. PubMed ID: 7989370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polymerization fidelity of a replicative DNA polymerase from the hyperthermophilic archaeon Sulfolobus solfataricus P2.
    Zhang L; Brown JA; Newmister SA; Suo Z
    Biochemistry; 2009 Aug; 48(31):7492-501. PubMed ID: 19456141
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of polar residues of the J-helix in the 3'-5' exonuclease activity of Escherichia coli DNA polymerase I (Klenow fragment): Q677 regulates the removal of terminal mismatch.
    Singh K; Modak MJ
    Biochemistry; 2005 Jun; 44(22):8101-10. PubMed ID: 15924429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I.
    Bebenek K; Joyce CM; Fitzgerald MP; Kunkel TA
    J Biol Chem; 1990 Aug; 265(23):13878-87. PubMed ID: 2199444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4.
    Capson TL; Peliska JA; Kaboord BF; Frey MW; Lively C; Dahlberg M; Benkovic SJ
    Biochemistry; 1992 Nov; 31(45):10984-94. PubMed ID: 1332748
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exonuclease-polymerase active site partitioning of primer-template DNA strands and equilibrium Mg2+ binding properties of bacteriophage T4 DNA polymerase.
    Beechem JM; Otto MR; Bloom LB; Eritja R; Reha-Krantz LJ; Goodman MF
    Biochemistry; 1998 Jul; 37(28):10144-55. PubMed ID: 9665720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Base selectivity is impaired by mutants that perturb hydrogen bonding networks in the RB69 DNA polymerase active site.
    Yang G; Wang J; Konigsberg W
    Biochemistry; 2005 Mar; 44(9):3338-46. PubMed ID: 15736944
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stopped-flow fluorescence study of precatalytic primer strand base-unstacking transitions in the exonuclease cleft of bacteriophage T4 DNA polymerase.
    Otto MR; Bloom LB; Goodman MF; Beechem JM
    Biochemistry; 1998 Jul; 37(28):10156-63. PubMed ID: 9665721
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Networked Communication between Polymerase and Exonuclease Active Sites in Human Mitochondrial DNA Polymerase.
    Sowers ML; Anderson APP; Wrabl JO; Yin YW
    J Am Chem Soc; 2019 Jul; 141(27):10821-10829. PubMed ID: 31251605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.