BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

369 related articles for article (PubMed ID: 36436657)

  • 1. Impacts of meteorological factors and ozone variation on crop yields in China concerning carbon neutrality objectives in 2060.
    Xu B; Wang T; Gao L; Ma D; Song R; Zhao J; Yang X; Li S; Zhuang B; Li M; Xie M
    Environ Pollut; 2023 Jan; 317():120715. PubMed ID: 36436657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does climate change affect potential yields of four staple grain crops worldwide by 2030?
    Cai C; Lv L; Wei S; Zhang L; Cao W
    PLoS One; 2024; 19(5):e0303857. PubMed ID: 38820516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The central trend in crop yields under climate change in China: A systematic review.
    Liu Y; Li N; Zhang Z; Huang C; Chen X; Wang F
    Sci Total Environ; 2020 Feb; 704():135355. PubMed ID: 31812435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Comparison of potential yield and resource utilization efficiency of main food crops in three provinces of Northeast China under climate change].
    Wang XY; Yang XG; Sun S; Xie WJ
    Ying Yong Sheng Tai Xue Bao; 2015 Oct; 26(10):3091-102. PubMed ID: 26995918
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying the impacts of climatic trend and fluctuation on crop yields in northern China.
    Qiao J; Yu D; Liu Y
    Environ Monit Assess; 2017 Oct; 189(11):532. PubMed ID: 28967045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios.
    Zhang Y; Wang Y; Niu H
    Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Projective analysis of staple food crop productivity in adaptation to future climate change in China.
    Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G
    Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Impact of Technological Progress and Climate Change on Food Crop Production: Evidence from Sichuan-China.
    Chandio AA; Nasereldin YA; Anh DLT; Tang Y; Sargani GR; Zhang H
    Int J Environ Res Public Health; 2022 Aug; 19(16):. PubMed ID: 36011495
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Climate variation explains a third of global crop yield variability.
    Ray DK; Gerber JS; MacDonald GK; West PC
    Nat Commun; 2015 Jan; 6():5989. PubMed ID: 25609225
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Estimating the impact of ground ozone concentrations on crop yields across China from 2014 to 2018: A multi-model comparison.
    Xu M; Yao Q; Chen D; Li M; Li R; Gao B; Zhao B; Chen Z
    Environ Pollut; 2021 Aug; 283():117099. PubMed ID: 33857877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Increasing global agricultural production by reducing ozone damages via methane emission controls and ozone-resistant cultivar selection.
    Avnery S; Mauzerall DL; Fiore AM
    Glob Chang Biol; 2013 Apr; 19(4):1285-99. PubMed ID: 23504903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Climate-associated major food crops production change under multi-scenario in China.
    Liu Y; Zhang J; Pan T; Chen Q; Qin Y; Ge Q
    Sci Total Environ; 2022 Mar; 811():151393. PubMed ID: 34748850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impacts of projected changes in sea surface temperature on ozone pollution in China toward carbon neutrality.
    Zhu J; Yang Y; Wang H; Gao J; Liu C; Wang P; Liao H
    Sci Total Environ; 2024 Mar; 915():170024. PubMed ID: 38224878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance.
    Mills G; Sharps K; Simpson D; Pleijel H; Frei M; Burkey K; Emberson L; Uddling J; Broberg M; Feng Z; Kobayashi K; Agrawal M
    Glob Chang Biol; 2018 Oct; 24(10):4869-4893. PubMed ID: 30084165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ground-level O3 pollution and its impacts on food crops in China: a review.
    Feng Z; Hu E; Wang X; Jiang L; Liu X
    Environ Pollut; 2015 Apr; 199():42-8. PubMed ID: 25618365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impacts of climate variability and adaptation strategies on crop yields and soil organic carbon in the US Midwest.
    Liu L; Basso B
    PLoS One; 2020; 15(1):e0225433. PubMed ID: 31990907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Projecting ozone impact on crop yield in Taiwan under climate warming.
    Tsai IC; Shu LS; Chen JP; Hsieh PR; Cheng CT
    Sci Total Environ; 2022 Nov; 846():157437. PubMed ID: 35863568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An analysis of ozone damage to historical maize and soybean yields in the United States.
    McGrath JM; Betzelberger AM; Wang S; Shook E; Zhu XG; Long SP; Ainsworth EA
    Proc Natl Acad Sci U S A; 2015 Nov; 112(46):14390-5. PubMed ID: 26578785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can conservation agriculture mitigate climate change and reduce environmental impacts for intensive cropping systems in North China Plain?
    Zhang H; Hobbie EA; Feng P; Niu L; Hu K
    Sci Total Environ; 2022 Feb; 806(Pt 3):151194. PubMed ID: 34699820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential benefits of cropping pattern change in the climate-sensitive regions of rice production in China.
    Guo E; Li T; Zhang Z; Guo S; Liu Z; Zhao J; Zhao C; Fan S; Shi Y; Guan K; Yang C; Yang X
    Sci Total Environ; 2024 Jul; 934():173281. PubMed ID: 38754496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.