These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 36436701)

  • 1. Reporting off-target effects of recombinant engineering using the pORTMAGE system.
    Sanders BR; Townsend SE; Ford ML; Graves JL; Thomas MD
    J Microbiol Methods; 2023 Jan; 204():106627. PubMed ID: 36436701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A highly precise and portable genome engineering method allows comparison of mutational effects across bacterial species.
    Nyerges Á; Csörgő B; Nagy I; Bálint B; Bihari P; Lázár V; Apjok G; Umenhoffer K; Bogos B; Pósfai G; Pál C
    Proc Natl Acad Sci U S A; 2016 Mar; 113(9):2502-7. PubMed ID: 26884157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recombineering: a homologous recombination-based method of genetic engineering.
    Sharan SK; Thomason LC; Kuznetsov SG; Court DL
    Nat Protoc; 2009; 4(2):206-23. PubMed ID: 19180090
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and effective method for construction of Escherichia coli strains proficient for genome engineering.
    Ryu YS; Biswas RK; Shin K; Parisutham V; Kim SM; Lee SK
    PLoS One; 2014; 9(4):e94266. PubMed ID: 24747264
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coupling ssDNA recombineering with CRISPR-Cas9 for Escherichia coli DnaG mutations.
    Li J; Sun J; Gao X; Wu Z; Shang G
    Appl Microbiol Biotechnol; 2019 Apr; 103(8):3559-3570. PubMed ID: 30879090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Developing an extended genomic engineering approach based on recombineering to knock-in heterologous genes to Escherichia coli genome.
    Sukhija K; Pyne M; Ali S; Orr V; Abedi D; Moo-Young M; Chou CP
    Mol Biotechnol; 2012 Jun; 51(2):109-18. PubMed ID: 21826554
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recombineering: highly efficient in vivo genetic engineering using single-strand oligos.
    Sawitzke JA; Thomason LC; Bubunenko M; Li X; Costantino N; Court DL
    Methods Enzymol; 2013; 533():157-77. PubMed ID: 24182922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain engineering by genome mass transfer: efficient chromosomal trait transfer method utilizing donor genomic DNA and recipient recombineering hosts.
    Williams JA; Luke J; Hodgson C
    Mol Biotechnol; 2009 Sep; 43(1):41-51. PubMed ID: 19455439
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Excision of selectable markers from the Escherichia coli genome without counterselection using an optimized λRed recombineering procedure.
    Bubnov DM; Yuzbashev TV; Vybornaya TV; Netrusov AI; Sineoky SP
    J Microbiol Methods; 2019 Mar; 158():86-92. PubMed ID: 30738107
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using recombineering to generate point mutations:galK-based positive-negative selection method.
    Biswas K; Stauffer S; Sharan SK
    Methods Mol Biol; 2012; 852():121-31. PubMed ID: 22328430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR/Cas9 recombineering-mediated deep mutational scanning of essential genes in Escherichia coli.
    Choudhury A; Fenster JA; Fankhauser RG; Kaar JL; Tenaillon O; Gill RT
    Mol Syst Biol; 2020 Mar; 16(3):e9265. PubMed ID: 32175691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trackable multiplex recombineering for gene-trait mapping in E. coli.
    Mansell TJ; Warner JR; Gill RT
    Methods Mol Biol; 2013; 985():223-46. PubMed ID: 23417807
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome engineering using targeted oligonucleotide libraries and functional selection.
    Diner EJ; Garza-Sánchez F; Hayes CS
    Methods Mol Biol; 2011; 765():71-82. PubMed ID: 21815087
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic Engineering by DNA Recombineering.
    Papa LJ; Shoulders MD
    Curr Protoc Chem Biol; 2019 Sep; 11(3):e70. PubMed ID: 31483098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conditional DNA repair mutants enable highly precise genome engineering.
    Nyerges Á; Csorgő B; Nagy I; Latinovics D; Szamecz B; Pósfai G; Pál C
    Nucleic Acids Res; 2014 Apr; 42(8):e62. PubMed ID: 24500200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An efficient, scarless, selection-free technology for phage engineering.
    Goren MG; Mahata T; Qimron U
    RNA Biol; 2023 Jan; 20(1):830-835. PubMed ID: 37846029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient and seamless DNA recombineering using a thymidylate synthase A selection system in Escherichia coli.
    Wong QN; Ng VC; Lin MC; Kung HF; Chan D; Huang JD
    Nucleic Acids Res; 2005 Mar; 33(6):e59. PubMed ID: 15800210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shaking up genome engineering.
    Tipton KA; Dueber J
    Nat Biotechnol; 2010 Aug; 28(8):812-3. PubMed ID: 20697406
    [No Abstract]   [Full Text] [Related]  

  • 19. Transient overexpression of DNA adenine methylase enables efficient and mobile genome engineering with reduced off-target effects.
    Lennen RM; Nilsson Wallin AI; Pedersen M; Bonde M; Luo H; Herrgård MJ; Sommer MO
    Nucleic Acids Res; 2016 Feb; 44(4):e36. PubMed ID: 26496947
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of FRT-sites by no-SCAR recombineering in
    Rangarajan AA; Yilmaz C; Schnetz K
    Microbiology (Reading); 2022 Apr; 168(4):. PubMed ID: 35411846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.