These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 36436861)
1. Liquid metal and Mxene enable self-healing soft electronics based on double networks of bacterial cellulose hydrogels. Wang M; Rojas OJ; Ning L; Li Y; Niu X; Shi X; Qi H Carbohydr Polym; 2023 Feb; 301(Pt A):120330. PubMed ID: 36436861 [TBL] [Abstract][Full Text] [Related]
2. TEMPO bacterial cellulose and MXene nanosheets synergistically promote tough hydrogels for intelligent wearable human-machine interaction. Dong B; Yu D; Lu P; Song Z; Chen W; Zhang F; Li B; Wang H; Liu W Carbohydr Polym; 2024 Feb; 326():121621. PubMed ID: 38142077 [TBL] [Abstract][Full Text] [Related]
3. Self-healing, EMI shielding, and antibacterial properties of recyclable cellulose liquid metal hydrogel sensor. Feng X; Wang C; Shang S; Liu H; Huang X; Jiang J; Song Z; Zhang H Carbohydr Polym; 2023 Jul; 311():120786. PubMed ID: 37028884 [TBL] [Abstract][Full Text] [Related]
5. Recent Progress in MXene Hydrogel for Wearable Electronics. Ren Y; He Q; Xu T; Zhang W; Peng Z; Meng B Biosensors (Basel); 2023 Apr; 13(5):. PubMed ID: 37232856 [TBL] [Abstract][Full Text] [Related]
6. Biodegradable and Electroactive Regenerated Bacterial Cellulose/MXene (Ti Mao L; Hu S; Gao Y; Wang L; Zhao W; Fu L; Cheng H; Xia L; Xie S; Ye W; Shi Z; Yang G Adv Healthc Mater; 2020 Oct; 9(19):e2000872. PubMed ID: 32864898 [TBL] [Abstract][Full Text] [Related]
7. Highly elastic, fatigue-resistant, antibacterial, conductive, and nanocellulose-enhanced hydrogels with selenium nanoparticles loading as strain sensors. Nie X; Xie Y; Ding X; Dai L; Gao F; Song W; Li X; Liu P; Tan Z; Shi H; Lai C; Zhang D; Lai Y Carbohydr Polym; 2024 Jun; 334():122068. PubMed ID: 38553197 [TBL] [Abstract][Full Text] [Related]
8. Water-dispersible and stable polydopamine coated cellulose nanocrystal-MXene composites for high transparent, adhesive and conductive hydrogels. Wan B; Liu N; Zhang Z; Fang X; Ding Y; Xiang H; He Y; Liu M; Lin X; Tang J; Li Y; Tang B; Zhou G Carbohydr Polym; 2023 Aug; 314():120929. PubMed ID: 37173010 [TBL] [Abstract][Full Text] [Related]
9. Electroactive Oxidized Alginate/Gelatin/MXene (Ti Zhu H; Dai W; Wang L; Yao C; Wang C; Gu B; Li D; He J Polymers (Basel); 2022 Sep; 14(18):. PubMed ID: 36146053 [TBL] [Abstract][Full Text] [Related]
10. Tannic Acid-Silver Dual Catalysis Induced Rapid Polymerization of Conductive Hydrogel Sensors with Excellent Stretchability, Self-Adhesion, and Strain-Sensitivity Properties. Hao S; Shao C; Meng L; Cui C; Xu F; Yang J ACS Appl Mater Interfaces; 2020 Dec; 12(50):56509-56521. PubMed ID: 33270440 [TBL] [Abstract][Full Text] [Related]
11. Synergy coordination of cellulose-based dialdehyde and carboxyl with Fe Wang Y; Zhang H; Zhang H; Chen J; Li B; Fu S Mater Sci Eng C Mater Biol Appl; 2021 Jun; 125():112094. PubMed ID: 33965104 [TBL] [Abstract][Full Text] [Related]
12. MXene-Mediated Cellulose Conductive Hydrogel with Ultrastretchability and Self-Healing Ability. Wan H; Chen Y; Tao Y; Chen P; Wang S; Jiang X; Lu A ACS Nano; 2023 Oct; 17(20):20699-20710. PubMed ID: 37823822 [TBL] [Abstract][Full Text] [Related]
13. A stretchable, self-healing conductive hydrogels based on nanocellulose supported graphene towards wearable monitoring of human motion. Zheng C; Lu K; Lu Y; Zhu S; Yue Y; Xu X; Mei C; Xiao H; Wu Q; Han J Carbohydr Polym; 2020 Dec; 250():116905. PubMed ID: 33049881 [TBL] [Abstract][Full Text] [Related]
14. Temperature-Stress Bimodal Sensing Conductive Hydrogel-Liquid Metal by Facile Synthesis for Smart Wearable Sensor. Wang C; Li J; Fang Z; Hu Z; Wei X; Cao Y; Han J; Li Y Macromol Rapid Commun; 2022 Jan; 43(1):e2100543. PubMed ID: 34699666 [TBL] [Abstract][Full Text] [Related]
15. Bio-Inspired Instant Underwater Adhesive Hydrogel Sensors. He S; Guo B; Sun X; Shi M; Zhang H; Yao F; Sun H; Li J ACS Appl Mater Interfaces; 2022 Oct; 14(40):45869-45879. PubMed ID: 36165460 [TBL] [Abstract][Full Text] [Related]
16. Healable, Recyclable, and Multifunctional Soft Electronics Based on Biopolymer Hydrogel and Patterned Liquid Metal. Hao XP; Zhang CW; Zhang XN; Hou LX; Hu J; Dickey MD; Zheng Q; Wu ZL Small; 2022 Jun; 18(23):e2201643. PubMed ID: 35532205 [TBL] [Abstract][Full Text] [Related]
17. Balancing the mechanical, electronic, and self-healing properties in conductive self-healing hydrogel for wearable sensor applications. Su G; Yin S; Guo Y; Zhao F; Guo Q; Zhang X; Zhou T; Yu G Mater Horiz; 2021 Jun; 8(6):1795-1804. PubMed ID: 34846508 [TBL] [Abstract][Full Text] [Related]
18. Polysaccharide/Ti He Y; Deng Z; Wang YJ; Zhao Y; Chen L Carbohydr Polym; 2022 Sep; 291():119572. PubMed ID: 35698337 [TBL] [Abstract][Full Text] [Related]
19. Fabrication and evaluation of bacterial nanocellulose/poly(acrylic acid)/graphene oxide composite hydrogel: Characterizations and biocompatibility studies for wound dressing. Chen XY; Low HR; Loi XY; Merel L; Mohd Cairul Iqbal MA J Biomed Mater Res B Appl Biomater; 2019 Aug; 107(6):2140-2151. PubMed ID: 30758129 [TBL] [Abstract][Full Text] [Related]
20. Super Tough and Intelligent Multibond Network Physical Hydrogels Facilitated by Ti Li Y; Yan J; Liu Y; Xie XM ACS Nano; 2022 Jan; 16(1):1567-1577. PubMed ID: 34958558 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]