These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 36437049)
1. Tunable Intervalence Charge Transfer in Ruthenium Prussian Blue Analog Enables Stable and Efficient Biocompatible Artificial Synapses. Robinson DA; Foster ME; Bennett CH; Bhandarkar A; Webster ER; Celebi A; Celebi N; Fuller EJ; Stavila V; Spataru CD; Ashby DS; Marinella MJ; Krishnakumar R; Allendorf MD; Talin AA Adv Mater; 2023 Sep; 35(37):e2207595. PubMed ID: 36437049 [TBL] [Abstract][Full Text] [Related]
2. Tunable Mixed-Valence Doping toward Record Electrical Conductivity in a Three-Dimensional Metal-Organic Framework. Xie LS; Sun L; Wan R; Park SS; DeGayner JA; Hendon CH; Dincă M J Am Chem Soc; 2018 Jun; 140(24):7411-7414. PubMed ID: 29807428 [TBL] [Abstract][Full Text] [Related]
3. Fully Printed All-Solid-State Organic Flexible Artificial Synapse for Neuromorphic Computing. Liu Q; Liu Y; Li J; Lau C; Wu F; Zhang A; Li Z; Chen M; Fu H; Draper J; Cao X; Zhou C ACS Appl Mater Interfaces; 2019 May; 11(18):16749-16757. PubMed ID: 31025562 [TBL] [Abstract][Full Text] [Related]
4. Through-Space Intervalence Charge Transfer as a Mechanism for Charge Delocalization in Metal-Organic Frameworks. Hua C; Doheny PW; Ding B; Chan B; Yu M; Kepert CJ; D'Alessandro DM J Am Chem Soc; 2018 May; 140(21):6622-6630. PubMed ID: 29727176 [TBL] [Abstract][Full Text] [Related]
5. Mixed-valent metals bridged by a radical ligand: fact or fiction based on structure-oxidation state correlations. Sarkar B; Patra S; Fiedler J; Sunoj RB; Janardanan D; Lahiri GK; Kaim W J Am Chem Soc; 2008 Mar; 130(11):3532-42. PubMed ID: 18290644 [TBL] [Abstract][Full Text] [Related]
6. Charge Delocalization and Bulk Electronic Conductivity in the Mixed-Valence Metal-Organic Framework Fe(1,2,3-triazolate) Park JG; Aubrey ML; Oktawiec J; Chakarawet K; Darago LE; Grandjean F; Long GJ; Long JR J Am Chem Soc; 2018 Jul; 140(27):8526-8534. PubMed ID: 29893567 [TBL] [Abstract][Full Text] [Related]
7. Ionotronic Halide Perovskite Drift-Diffusive Synapses for Low-Power Neuromorphic Computation. John RA; Yantara N; Ng YF; Narasimman G; Mosconi E; Meggiolaro D; Kulkarni MR; Gopalakrishnan PK; Nguyen CA; De Angelis F; Mhaisalkar SG; Basu A; Mathews N Adv Mater; 2018 Dec; 30(51):e1805454. PubMed ID: 30334296 [TBL] [Abstract][Full Text] [Related]
8. Electronic and photophysical properties of a novel phenol bound dinuclear ruthenium complex: evidence for a luminescent mixed valence state. Keyes TE; Evrard B; Vos JG; Brady C; McGarvey JJ; Jayaweera P Dalton Trans; 2004 Aug; (15):2341-6. PubMed ID: 15278128 [TBL] [Abstract][Full Text] [Related]
9. Electronic Conductivity in a Porous Vanadyl Prussian Blue Analogue upon Air Exposure. Manumpil MA; Leal-Cervantes C; Hudson MR; Brown CM; Karunadasa HI Inorg Chem; 2017 Nov; 56(21):12682-12686. PubMed ID: 29058412 [TBL] [Abstract][Full Text] [Related]
10. Photoinduced Electron Transfer in Pentaammineruthenium(II) Complexes of 1-(4-Cyanophenyl)imidazole. Hatzidimitriou A; Gourdon A; Devillers J; Launay JP; Mena E; Amouyal E Inorg Chem; 1996 Apr; 35(8):2212-2219. PubMed ID: 11666415 [TBL] [Abstract][Full Text] [Related]
11. The Excited-State Creutz-Taube Ion. Pieslinger GE; Ramírez-Wierzbicki I; Cadranel A Angew Chem Int Ed Engl; 2022 Dec; 61(49):e202211747. PubMed ID: 36161441 [TBL] [Abstract][Full Text] [Related]
12. On the observation of intervalence charge transfer bands in hydrogen-bonded mixed-valence complexes. Canzi G; Goeltz JC; Henderson JS; Park RE; Maruggi C; Kubiak CP J Am Chem Soc; 2014 Feb; 136(5):1710-3. PubMed ID: 24437710 [TBL] [Abstract][Full Text] [Related]
13. Quantification of the mixed-valence and intervalence charge transfer properties of a cofacial metal-organic framework Doheny PW; Clegg JK; Tuna F; Collison D; Kepert CJ; D'Alessandro DM Chem Sci; 2020 Apr; 11(20):5213-5220. PubMed ID: 34122977 [TBL] [Abstract][Full Text] [Related]
14. Organic Synapses for Neuromorphic Electronics: From Brain-Inspired Computing to Sensorimotor Nervetronics. Lee Y; Lee TW Acc Chem Res; 2019 Apr; 52(4):964-974. PubMed ID: 30896916 [TBL] [Abstract][Full Text] [Related]
16. Redox Behavior of a Dinuclear Ruthenium(II) Complex Bearing an Uncommon Bridging Ligand: Insights from High-Pressure Electrochemistry. Dürr M; Klein J; Kahnt A; Becker S; Puchta R; Sarkar B; Ivanović-Burmazović I Inorg Chem; 2017 Dec; 56(24):14912-14925. PubMed ID: 29155569 [TBL] [Abstract][Full Text] [Related]
17. Rutheniumethynyl-Triarylamine Organic-Inorganic Mixed-Valence Systems: Regulating Ru-N Electronic Coupling by Different Aryl Bridge Cores. Ou YP; Zhang J; Wang A; Yuan A; Yin C; Liu SH Chem Asian J; 2020 Oct; 15(20):3338-3349. PubMed ID: 32840035 [TBL] [Abstract][Full Text] [Related]
18. Ultralow Power Wearable Organic Ferroelectric Device for Optoelectronic Neuromorphic Computing. Li Q; Wang T; Fang Y; Hu X; Tang C; Wu X; Zhu H; Ji L; Sun QQ; Zhang DW; Chen L Nano Lett; 2022 Aug; 22(15):6435-6443. PubMed ID: 35737934 [TBL] [Abstract][Full Text] [Related]
19. Flexible Neuromorphic Electronics for Computing, Soft Robotics, and Neuroprosthetics. Park HL; Lee Y; Kim N; Seo DG; Go GT; Lee TW Adv Mater; 2020 Apr; 32(15):e1903558. PubMed ID: 31559670 [TBL] [Abstract][Full Text] [Related]
20. Memristors based on 2D MoSe Duan H; Wang D; Gou J; Guo F; Jie W; Hao J Nanoscale; 2023 Jun; 15(23):10089-10096. PubMed ID: 37249372 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]